INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 399
H
Now try the following exercise.
Exercise 156 Further problems on integra-
tion of sin^2 x, cos^2 x, tan^2 xand cot^2 x
In Problems 1 to 4, integrate with respect to the
variable.
- sin^22 x
[
1
2
(
x−
sin 4x
4
)
+c
]
- 3 cos^2 t
[
3
2
(
t+
sin 2t
2
)
+c
]
- 5 tan^23 θ
[
5
(
1
3
tan 3θ−θ
)
+c
]
- 2 cot^22 t [−(cot 2t+ 2 t)+c]
In Problems 5 to 8, evaluate the definite integrals,
correct to 4 significant figures.
5.
∫ π
3
0
3 sin^23 xdx
[π
2
or 1. 571
]
6.
∫ π
4
0
cos^24 xdx
[π
8
or 0. 3927
]
7.
∫ 1
0
2 tan^22 tdt [− 4 .185]
8.
∫ π
3
π
6
cot^2 θdθ [0.6311]
40.3 Worked problems on powers of
sines and cosines
Problem 5. Determine
∫
sin^5 θdθ.
Since cos^2 θ+sin^2 θ=1 then sin^2 θ=(1−cos^2 θ).
Hence
∫
sin^5 θdθ
=
∫
sinθ( sin^2 θ)^2 dθ=
∫
sinθ(1−cos^2 θ)^2 dθ
=
∫
sinθ(1−2 cos^2 θ+cos^4 θ)dθ
=
∫
(sinθ−2 sinθcos^2 θ+sinθcos^4 θ)dθ
=−cosθ+
2 cos^3 θ
3
−
cos^5 θ
5
+c
[Whenever a power of a cosine is multiplied by a
sine of power 1, or vice-versa, the integral may be
determined by inspection as shown.
In general,
∫
cosnθsinθdθ=
−cosn+^1 θ
(n+1)
+c
and
∫
sinnθcosθdθ =
sinn+^1 θ
(n+1)
+c
Problem 6. Evaluate
∫π
2
0
sin^2 xcos^3 xdx.
∫ π
2
0
sin^2 xcos^3 xdx=
∫π
2
0
sin^2 xcos^2 xcosxdx
=
∫ π
2
0
(sin^2 x)(1−sin^2 x)(cosx)dx
=
∫ π
2
0
(sin^2 xcosx−sin^4 xcosx)dx
=
[
sin^3 x
3
−
sin^5 x
5
]π
2
0
=
⎡
⎢
⎣
(
sin
π
2
) 3
3
−
(
sin
π
2
) 5
5
⎤
⎥
⎦−[0−0]
=
1
3
−
1
5
=
2
15
or 0. 1333
Problem 7. Evaluate
∫π
4
0
4 cos^4 θdθ, correct
to 4 significant figures.
∫ π
4
0
4 cos^4 θdθ= 4
∫ π
4
0
(cos^2 θ)^2 dθ
= 4
∫ π
4
0
[
1
2
(1+cos 2θ)
] 2
dθ
=
∫ π
4
0
(1+2 cos 2θ+cos^22 θ)dθ
=
∫ π
4
0
[
1 +2 cos 2θ+
1
2
(1+cos 4θ)
]
dθ
=
∫ π
4
0
(
3
2
+2 cos 2θ+
1
2
cos 4θ
)
dθ