INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 401
H
Problem 11. Evaluate
∫ 1
0
2 cos 6θcosθdθ,
correct to 4 decimal places.
∫ 1
0
2 cos 6θcosθdθ
= 2
∫ 1
0
1
2
[ cos (6θ+θ)+cos (6θ−θ)] dθ,
from 8 of Table 40.1
=
∫ 1
0
(cos 7θ+cos 5θ)dθ=
[
sin 7θ
7
+
sin 5θ
5
] 1
0
=
(
sin 7
7
+
sin 5
5
)
−
(
sin 0
7
+
sin 0
5
)
‘sin 7’ means ‘the sine of 7 radians’ (≡ 401 ◦ 4 ′) and
sin 5≡ 286 ◦ 29 ′.
Hence
∫ 1
0
2 cos 6θcosθdθ
=(0. 09386 +(− 0 .19178))−(0)
=− 0. 0979 , correct to 4 decimal places
Problem 12. Find 3
∫
sin 5xsin 3xdx.
3
∫
sin 5xsin 3xdx
= 3
∫
−
1
2
[ cos (5x+ 3 x)−cos (5x− 3 x)] dx,
from 9 of Table 40.1
=−
3
2
∫
( cos 8x−cos 2x)dx
=−
3
2
(
sin 8
8
−
sin 2x
2
)
+c or
3
16
(4 sin 2x−sin 8x)+c
Now try the following exercise.
Exercise 158 Further problems on integra-
tion of products of sines and cosines
In Problems 1 to 4, integrate with respect to the
variable.
- sin 5tcos 2t
[
−
1
2
(
cos 7t
7
+
cos 3t
3
)
+c
]
- 2 sin 3xsinx
[
sin 2x
2
−
sin 4x
4
+c
]
- 3 cos 6xcosx [
3
2
(
sin 7x
7
+
sin 5x
5
)
+c
]
4.
1
2
cos 4θsin 2θ
[
1
4
(
cos 2θ
2
−
cos 6θ
6
)
+c
]
In Problems 5 to 8, evaluate the definite integrals.
5.
∫π
2
0
cos 4xcos 3xdx
[
(a)
3
7
or 0. 4286
]
6.
∫ 1
0
2 sin 7tcos 3tdt [0.5973]
7.− 4
∫ π
3
0
sin 5θsin 2θdθ [0.2474]
8.
∫ 2
1
3 cos 8tsin 3tdt [−0.1999]
40.5 Worked problems on integration
using the sinθsubstitution
Problem 13. Determine
∫
1
√
(a^2 −x^2 )
dx.
Letx=asinθ, then
dx
dθ
=acosθand dx=acosθdθ.
Hence
∫
1
√
(a^2 −x^2 )
dx
=
∫
1
√
(a^2 −a^2 sin^2 θ)
acosθdθ
=
∫
acosθdθ
√
[a^2 (1−sin^2 θ)]
=
∫
acosθdθ
√
(a^2 cos^2 θ)
, since sin^2 θ+cos^2 θ= 1
=
∫
acosθdθ
acosθ
=
∫
dθ=θ+c