INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 401H
Problem 11. Evaluate∫ 102 cos 6θcosθdθ,correct to 4 decimal places.∫ 102 cos 6θcosθdθ= 2∫ 101
2[ cos (6θ+θ)+cos (6θ−θ)] dθ,from 8 of Table 40.1=∫ 10(cos 7θ+cos 5θ)dθ=[
sin 7θ
7+sin 5θ
5] 10=(
sin 7
7+sin 5
5)
−(
sin 0
7+sin 0
5)‘sin 7’ means ‘the sine of 7 radians’ (≡ 401 ◦ 4 ′) and
sin 5≡ 286 ◦ 29 ′.
Hence∫ 102 cos 6θcosθdθ=(0. 09386 +(− 0 .19178))−(0)
=− 0. 0979 , correct to 4 decimal placesProblem 12. Find 3∫
sin 5xsin 3xdx.3∫
sin 5xsin 3xdx= 3∫
−1
2[ cos (5x+ 3 x)−cos (5x− 3 x)] dx,from 9 of Table 40.1=−3
2∫
( cos 8x−cos 2x)dx=−3
2(
sin 8
8−sin 2x
2)
+c or3
16(4 sin 2x−sin 8x)+cNow try the following exercise.
Exercise 158 Further problems on integra-
tion of products of sines and cosinesIn Problems 1 to 4, integrate with respect to the
variable.- sin 5tcos 2t
[
−1
2(
cos 7t
7+cos 3t
3)
+c]- 2 sin 3xsinx
[
sin 2x
2−sin 4x
4+c]- 3 cos 6xcosx [
3
2
(
sin 7x
7+sin 5x
5)
+c]4.1
2cos 4θsin 2θ
[
1
4(
cos 2θ
2−cos 6θ
6)
+c]In Problems 5 to 8, evaluate the definite integrals.5.∫π
20cos 4xcos 3xdx[
(a)3
7or 0. 4286]6.∫ 102 sin 7tcos 3tdt [0.5973]7.− 4∫ π
30sin 5θsin 2θdθ [0.2474]8.∫ 213 cos 8tsin 3tdt [−0.1999]40.5 Worked problems on integration
using the sinθsubstitutionProblem 13. Determine∫
1
√
(a^2 −x^2 )dx.Letx=asinθ, thendx
dθ=acosθand dx=acosθdθ.Hence∫
1
√
(a^2 −x^2 )dx=∫
1
√
(a^2 −a^2 sin^2 θ)acosθdθ=∫
acosθdθ
√
[a^2 (1−sin^2 θ)]=∫
acosθdθ
√
(a^2 cos^2 θ), since sin^2 θ+cos^2 θ= 1=∫
acosθdθ
acosθ=∫
dθ=θ+c