Higher Engineering Mathematics

(Greg DeLong) #1
INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 403

H


  1. Determine


∫ √
(16− 9 t^2 )dt
[
8
3

sin−^1

3 t
4

+

t
2


(16− 9 t^2 )+c

]


  1. Evaluate


∫ 4

0

1

(16−x^2 )

dx


2

or 1. 571

]


  1. Evaluate


∫ 1

0


(9− 4 x^2 )dx [2.760]

40.6 Worked problems on integration


using tanθsubstitution


Problem 17. Determine


1
(a^2 +x^2 )

dx.

Letx=atanθthen


dx

=asec^2 θand dx=asec^2 θdθ.

Hence


1
(a^2 +x^2 )

dx

=


1
(a^2 +a^2 tan^2 θ)

(asec^2 θdθ)

=


asec^2 θdθ
a^2 (1+tan^2 θ)

=


asec^2 θdθ
a^2 sec^2 θ

, since 1+tan^2 θ=sec^2 θ

=


1
a

dθ=

1
a

(θ)+c

Sincex=atanθ,θ=tan−^1


x
a

Hence



1
(a^2 +x^2 )

dx=

1
a

tan−^1

x
a

+c.

Problem 18. Evaluate

∫ 2

0

1
(4+x^2 )

dx.

From Problem 17,

∫ 2

0

1
(4+x^2 )

dx

=

1
2

[
tan−^1

x
2

] 2

0

sincea= 2

=

1
2

(tan−^11 −tan−^1 0)=

1
2


4

− 0

)

=

π
8

or 0. 3927

Problem 19. Evaluate

∫ 1

0

5
(3+ 2 x^2 )

dx, cor-

rect to 4 decimal places.

∫ 1

0

5
(3+ 2 x^2 )

dx=

∫ 1

0

5
2[(3/2)+x^2 ]

dx

=

5
2

∫ 1

0

1
[


(3/2)]^2 +x^2

dx

=

5
2

[
1

(3/2)

tan−^1

x

(3/2)

] 1

0

=

5
2

√(
2
3

)[
tan−^1

√(
2
3

)
−tan−^10

]

=(2.0412)[0. 6847 −0]
= 1. 3976 , correct to 4 decimal places

Now try the following exercise.

Exercise 160 Further problems on integra-
tion using the tanθsubstitution


  1. Determine



3
4 +t^2

dt

[
3
2

tan−^1

t
2

+c

]


  1. Determine



5
16 + 9 θ^2


[
5
12

tan−^1

3 θ
4

+c

]


  1. Evaluate


∫ 1

0

3
1 +t^2

dt [2.356]


  1. Evaluate


∫ 3

0

5
4 +x^2

dx [2.457]

40.7 Worked problems on integration
using the sinhθsubstitution

Problem 20. Determine


1

(x^2 +a^2 )

dx.
Free download pdf