INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 403H
- Determine
∫ √
(16− 9 t^2 )dt
[
8
3sin−^13 t
4+t
2√
(16− 9 t^2 )+c]- Evaluate
∫ 401
√
(16−x^2 )dx[π2or 1. 571]- Evaluate
∫ 10√
(9− 4 x^2 )dx [2.760]40.6 Worked problems on integration
using tanθsubstitution
Problem 17. Determine∫
1
(a^2 +x^2 )dx.Letx=atanθthen
dx
dθ=asec^2 θand dx=asec^2 θdθ.Hence∫
1
(a^2 +x^2 )dx=∫
1
(a^2 +a^2 tan^2 θ)(asec^2 θdθ)=∫
asec^2 θdθ
a^2 (1+tan^2 θ)=∫
asec^2 θdθ
a^2 sec^2 θ, since 1+tan^2 θ=sec^2 θ=∫
1
adθ=1
a(θ)+cSincex=atanθ,θ=tan−^1
x
aHence
∫
1
(a^2 +x^2 )dx=1
atan−^1x
a+c.Problem 18. Evaluate∫ 201
(4+x^2 )dx.From Problem 17,∫ 201
(4+x^2 )dx=1
2[
tan−^1x
2] 20sincea= 2=1
2(tan−^11 −tan−^1 0)=1
2(π4− 0)=π
8or 0. 3927Problem 19. Evaluate∫ 105
(3+ 2 x^2 )dx, cor-rect to 4 decimal places.∫ 105
(3+ 2 x^2 )dx=∫ 105
2[(3/2)+x^2 ]dx=5
2∫ 101
[√
(3/2)]^2 +x^2dx=5
2[
1
√
(3/2)tan−^1x
√
(3/2)] 10=5
2√(
2
3)[
tan−^1√(
2
3)
−tan−^10]=(2.0412)[0. 6847 −0]
= 1. 3976 , correct to 4 decimal placesNow try the following exercise.Exercise 160 Further problems on integra-
tion using the tanθsubstitution- Determine
∫
3
4 +t^2dt[
3
2tan−^1t
2+c]- Determine
∫
5
16 + 9 θ^2dθ
[
5
12tan−^13 θ
4+c]- Evaluate
∫ 103
1 +t^2dt [2.356]- Evaluate
∫ 305
4 +x^2dx [2.457]40.7 Worked problems on integration
using the sinhθsubstitutionProblem 20. Determine∫
1
√
(x^2 +a^2 )dx.