INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 403
H
- Determine
∫ √
(16− 9 t^2 )dt
[
8
3
sin−^1
3 t
4
+
t
2
√
(16− 9 t^2 )+c
]
- Evaluate
∫ 4
0
1
√
(16−x^2 )
dx
[π
2
or 1. 571
]
- Evaluate
∫ 1
0
√
(9− 4 x^2 )dx [2.760]
40.6 Worked problems on integration
using tanθsubstitution
Problem 17. Determine
∫
1
(a^2 +x^2 )
dx.
Letx=atanθthen
dx
dθ
=asec^2 θand dx=asec^2 θdθ.
Hence
∫
1
(a^2 +x^2 )
dx
=
∫
1
(a^2 +a^2 tan^2 θ)
(asec^2 θdθ)
=
∫
asec^2 θdθ
a^2 (1+tan^2 θ)
=
∫
asec^2 θdθ
a^2 sec^2 θ
, since 1+tan^2 θ=sec^2 θ
=
∫
1
a
dθ=
1
a
(θ)+c
Sincex=atanθ,θ=tan−^1
x
a
Hence
∫
1
(a^2 +x^2 )
dx=
1
a
tan−^1
x
a
+c.
Problem 18. Evaluate
∫ 2
0
1
(4+x^2 )
dx.
From Problem 17,
∫ 2
0
1
(4+x^2 )
dx
=
1
2
[
tan−^1
x
2
] 2
0
sincea= 2
=
1
2
(tan−^11 −tan−^1 0)=
1
2
(π
4
− 0
)
=
π
8
or 0. 3927
Problem 19. Evaluate
∫ 1
0
5
(3+ 2 x^2 )
dx, cor-
rect to 4 decimal places.
∫ 1
0
5
(3+ 2 x^2 )
dx=
∫ 1
0
5
2[(3/2)+x^2 ]
dx
=
5
2
∫ 1
0
1
[
√
(3/2)]^2 +x^2
dx
=
5
2
[
1
√
(3/2)
tan−^1
x
√
(3/2)
] 1
0
=
5
2
√(
2
3
)[
tan−^1
√(
2
3
)
−tan−^10
]
=(2.0412)[0. 6847 −0]
= 1. 3976 , correct to 4 decimal places
Now try the following exercise.
Exercise 160 Further problems on integra-
tion using the tanθsubstitution
- Determine
∫
3
4 +t^2
dt
[
3
2
tan−^1
t
2
+c
]
- Determine
∫
5
16 + 9 θ^2
dθ
[
5
12
tan−^1
3 θ
4
+c
]
- Evaluate
∫ 1
0
3
1 +t^2
dt [2.356]
- Evaluate
∫ 3
0
5
4 +x^2
dx [2.457]
40.7 Worked problems on integration
using the sinhθsubstitution
Problem 20. Determine
∫
1
√
(x^2 +a^2 )
dx.