THEt=tanθ 2 SUBSTITUTION 415H
from 12 of Table 40.1, page 398. Hence
∫
dθ
5 +4 cosθ=2
3tan−^1(
1
3tanθ
2)
+cNow try the following exercise.
Exercise 166 Further problems on thet=tanθ
2substitutionIntegrate the following with respect to the
variable:1.∫
dθ
1 +sinθ⎡⎢
⎣− 21 +tanθ
2+c⎤⎥
⎦2.∫
dx
1 −cosx+sinx
⎡⎢
⎣ln⎧
⎪⎨⎪⎩tanx
2
1 +tanx
2⎫
⎪⎬⎪⎭+c⎤⎥
⎦3.∫
dα
3 +2 cosα
[
2
√
5tan−^1(
1
√
5tanα
2)
+c]4.∫
dx
3 sinx−4 cosx
⎡⎢
⎣1
5ln⎧
⎪⎨⎪⎩2 tanx
2− 1tanx
2+ 2⎫
⎪⎬⎪⎭+c⎤⎥
⎦42.3 Further worked problems on the
t=tan
θ
2
substitution
Problem 5. Determine:∫
dx
sinx+cosxIf tan
x
2then sinx=2 t
1 +t^2, cosx=1 −t^2
1 +t^2anddx=
2dt
1 +t^2from equations (1), (2) and (3).Thus
∫
dx
sinx+cosx=∫2dt
1 +t^2
(
2 t
1 +t^2)
+(
1 −t^2
1 +t^2)=∫2dt
1 +t^2
2 t+ 1 −t^2
1 +t^2=∫
2dt
1 + 2 t−t^2=∫
−2dt
t^2 − 2 t− 1=∫
−2dt
(t−1)^2 − 2=∫
2dt(√
2)^2 −(t−1)^2= 2[
12√
2ln{√
2 +(t−1)
√
2 −(t−1)}]+c(see problem 11, Chapter 41, page 411),i.e.∫
dx
sinx+cosx=1
√
2ln⎧
⎪⎨⎪⎩√
2 − 1 +tanx
2
√
2 + 1 −tanx
2⎫
⎪⎬⎪⎭+cProblem 6. Determine:∫
dx
7 −3 sinx+6 cosxFrom equations (1) and (3),
∫
dx
7 −3 sinx+6 cosx=∫ 2dt
1 +t^27 − 3(
2 t
1 +t^2)
+ 6(
1 −t^2
1 +t^2)=∫2dt
1 +t^2
7(1+t^2 )−3(2t)+6(1−t^2 )
1 +t^2=∫
2dt
7 + 7 t^2 − 6 t+ 6 − 6 t^2=∫
2dt
t^2 − 6 t+ 13=∫
2dt
(t−3)^2 + 22= 2[
1
2tan−^1(
t− 3
2)]
+c