Higher Engineering Mathematics

(Greg DeLong) #1
THEt=tanθ 2 SUBSTITUTION 415

H

from 12 of Table 40.1, page 398. Hence




5 +4 cosθ

=

2
3

tan−^1

(
1
3

tan

θ
2

)
+c

Now try the following exercise.


Exercise 166 Further problems on the

t=tan

θ
2

substitution

Integrate the following with respect to the
variable:

1.



1 +sinθ




− 2

1 +tan

θ
2

+c




2.


dx
1 −cosx+sinx


⎣ln


⎪⎨

⎪⎩

tan

x
2
1 +tan

x
2


⎪⎬

⎪⎭

+c




3.



3 +2 cosα
[
2

5

tan−^1

(
1

5

tan

α
2

)
+c

]

4.


dx
3 sinx−4 cosx



1
5

ln


⎪⎨

⎪⎩

2 tan

x
2

− 1

tan

x
2

+ 2


⎪⎬

⎪⎭

+c




42.3 Further worked problems on the


t=tan


θ


2


substitution


Problem 5. Determine:


dx
sinx+cosx

If tan


x
2

then sinx=

2 t
1 +t^2

, cosx=

1 −t^2
1 +t^2

and

dx=


2dt
1 +t^2

from equations (1), (2) and (3).

Thus

dx
sinx+cosx

=


2dt
1 +t^2
(
2 t
1 +t^2

)
+

(
1 −t^2
1 +t^2

)

=


2dt
1 +t^2
2 t+ 1 −t^2
1 +t^2

=


2dt
1 + 2 t−t^2

=


−2dt
t^2 − 2 t− 1

=


−2dt
(t−1)^2 − 2

=


2dt

(


2)^2 −(t−1)^2

= 2

[
1

2


2

ln

{√
2 +(t−1)

2 −(t−1)

}]

+c

(see problem 11, Chapter 41, page 411),

i.e.


dx
sinx+cosx

=

1

2

ln


⎪⎨

⎪⎩


2 − 1 +tan

x
2

2 + 1 −tan

x
2


⎪⎬

⎪⎭

+c

Problem 6. Determine:∫
dx
7 −3 sinx+6 cosx

From equations (1) and (3),

dx
7 −3 sinx+6 cosx

=

∫ 2dt
1 +t^2

7 − 3

(
2 t
1 +t^2

)
+ 6

(
1 −t^2
1 +t^2

)

=


2dt
1 +t^2
7(1+t^2 )−3(2t)+6(1−t^2 )
1 +t^2

=


2dt
7 + 7 t^2 − 6 t+ 6 − 6 t^2

=


2dt
t^2 − 6 t+ 13

=


2dt
(t−3)^2 + 22

= 2

[
1
2

tan−^1

(
t− 3
2

)]
+c
Free download pdf