486 DIFFERENTIAL EQUATIONS
3.
d^2 y
dx^2
+ 9 y=26e^2 x
[y=Acos 3x+Bsin 3x+2e^2 x]
- 9
d^2 y
dt^2
− 6
dy
dt
+y=12e
t
3
[
y=(At+B)e
1
3 t+^23 t^2 e
1
3 t
]
In problems 5 and 6 find the particular solutions
of the given differential equations.
- 5
d^2 y
dx^2
+ 9
dy
dx
− 2 y=3ex; whenx=0,y=
1
4
and
dy
dx
=0.
[
y=
5
44
(
e−^2 x−e
1
5 x
)
+
1
4
ex
]
6.
d^2 y
dt^2
− 6
dy
dt
+ 9 y=4e^3 t; whent=0,y= 2
and
dy
dt
=0[y=2e^3 t(1− 3 t+t^2 )]
51.5 Worked problems on differential
equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)wheref(x)
is a sine or cosine function
Problem 7. Solve the differential equation
2
d^2 y
dx^2
+ 3
dy
dx
− 5 y=6 sin 2x.
Using the procedure of Section 51.2:
(i) 2
d^2 y
dx^2
+ 3
dy
dx
− 5 y=6 sin 2xin D-operator form
is (2D^2 +3D−5)y=6 sin 2x
(ii) The auxiliary equation is 2m^2 + 3 m− 5 =0,
from which,
(m−1)(2m+5)=0,
i.e. m=1orm=−^52
(iii) Since the roots are real and different the C.F.,
u=Aex+Be−
5
2 x.
(iv) Let the P.I., v=Asin 2x+Bcos 2x (see
Table 51.1(d)).
(v) Substitutingv=Asin 2x+Bcos 2xinto
(2D^2 +3D−5)v=6 sin 2xgives:
(2D^2 +3D−5)(Asin 2x+Bcos 2x)=6 sin 2x.
D(Asin 2x+Bcos 2x)
= 2 Acos 2x− 2 Bsin 2x
D^2 (Asin 2x+Bcos 2x)
=D(2Acos 2x− 2 Bsin 2x)
=− 4 Asin 2x− 4 Bcos 2x
Hence (2D^2 +3D−5)(Asin 2x+Bcos 2x)
=− 8 Asin 2x− 8 Bcos 2x+ 6 Acos 2x
− 6 Bsin 2x− 5 Asin 2x− 5 Bcos 2x
=6 sin 2x
Equating coefficient of sin 2xgives:
− 13 A− 6 B= 6 (1)
Equating coefficients of cos 2xgives:
6 A− 13 B=0(2)
6 ×(1)gives : − 78 A− 36 B= 36 (3)
13 ×(2)gives : 78 A− 169 B=0(4)
(3)+(4)gives : − 205 B= 36
from which, B=
− 36
205
SubstitutingB=
− 36
205
into equation (1) or (2)
givesA=
− 78
205
Hence the P.I.,v=
− 78
205
sin 2x−
36
205
cos 2x.
(vi) The general solution,y=u+v, i.e.
y=Aex+Be−
5
2 x
−
2
205
(39 sin 2x+18 cos 2x)
Problem 8. Solve
d^2 y
dx^2
+ 16 y=10 cos 4x
giveny=3 and
dy
dx
=4 whenx=0.