488 DIFFERENTIAL EQUATIONS- A differential equation representing the
motion of a body isd^2 y
dt^2+n^2 y=ksinpt,
wherek,nandpare constants. Solve the
equation (givenn=0 andp^2 =n^2 ) given thatwhent=0,y=dy
dt=0.
[
y=k
n^2 −p^2(
sinpt−p
nsinnt)]- The motion of a vibrating mass is given by
d^2 y
dt^2
+ 8dy
dt+ 20 y=300 sin 4t. Show that the
general solution of the differential equation is
given by:y=e−^4 t(Acos 2t+Bsin 2t)+15
13( sin 4t−8 cos 4t)- L
d^2 q
dt^2+Rdq
dt+1
Cq=V 0 sinωt represents
the variation of capacitor charge in an
electric circuit. Determine an expression
forqat timetseconds given thatR= 40 ,
L= 0 .02 H,C= 50 × 10 −^6 F,V 0 = 540 .8V
andω=200 rad/s and given the boundary
conditions that when t=0, q=0 and
dq
dt= 4. 8
[
q=(10t+ 0 .01)e−^1000 t
+ 0 .024 sin 200t− 0 .010 cos 200t]51.6 Worked problems on differential
equations of the form
a
d^2 y
dx^2
+b
dy
dx
+cy=f(x)where
f(x)is a sum or a product
Problem 9. Solve
d^2 y
dx^2+dy
dx− 6 y= 12 x−50 sinx.Using the procedure of Section 51.2:(i)d^2 y
dx^2+dy
dx− 6 y= 12 x−50 sinxin D-operator
form is(D^2 +D−6)y= 12 x−50 sinx(ii) The auxiliary equation is (m^2 +m−6)=0,
from which,
(m−2)(m+3)=0,
i.e. m=2orm=− 3(iii) Since the roots are real and different, the C.F.,
u=Ae^2 x+Be−^3 x.(iv) Since the right hand side of the given differen-
tial equation is the sum of a polynomial and a
sine function let the P.I.v=ax+b+csinx+
dcosx(see Table 51.1(e)).(v) Substitutingvinto
(D^2 +D−6)v= 12 x−50 sinxgives:(D^2 +D−6)(ax+b+csinx+dcosx)
= 12 x−50 sinxD(ax+b+csinx+dcosx)
=a+ccosx−dsinxD^2 (ax+b+csinx+dcosx)
=−csinx−dcosxHence (D^2 +D−6)(v)
=(−csinx−dcosx)+(a+ccosx
−dsinx)−6(ax+b+csinx+dcosx)
= 12 x−50 sinx
Equating constant terms gives:
a− 6 b= 0 (1)Equating coefficients of xgives:− 6 a=12,
from which,a=−2.
Hence, from (1),b=−^13
Equating the coefficients of cosxgives:
−d+c− 6 d= 0i.e. c− 7 d= 0(2)Equating the coefficients of sinxgives:
−c−d− 6 c=− 50i.e. − 7 c−d=− 50(3)Solving equations (2) and (3) gives:c=7 and
d=1.
Hence the P.I.,υ=− 2 x−^13 +7 sinx+cosx