640 LAPLACE TRANSFORMS
(a)L−^1
{
5
s^2 + 2 s− 3}
=L−^1{
5
(s+1)^2 − 22}=L−^1⎧
⎪⎨⎪⎩5
2(2)(s+1)^2 − 22⎫
⎪⎬⎪⎭=5
2e−tsinh 2t,from (xiv) of Table 66.1(b)L−^1{
4 s− 3
s^2 − 4 s− 5}
=L−^1{
4 s− 3
(s−2)^2 − 32}=L−^1{
4(s−2)+ 5
(s−2)^2 − 32}=L−^1{
4(s−2)
(s−2)^2 − 32}+L−^1{
5
(s−2)^2 − 32}=4e^2 tcosh 3t+L−^1⎧
⎪⎨⎪⎩5
3(3)(s−2)^2 − 32⎫
⎪⎬⎪⎭from (xv) of Table 66.1=4e^2 tcosh 3t+5
3e^2 tsinh 3t,from (xiv) of Table 66.1Now try the following exercise.
Exercise 235 Further problems on inverse
Laplace transforms of simple functionsDetermine the inverse Laplace transforms of the
following:- (a)
7
s(b)2
s− 5[(a) 7 (b) 2e^5 t]- (a)
3
2 s+ 1(b)2 s
s^2 + 4
[
(a)3
2e−1
2 t (b) 2 cos 2t]- (a)
1
s^2 + 25(b)4
s^2 + 9
[
(a)1
5sin 5t (b)4
3sin 3t]- (a)
5 s
2 s^2 + 18(b)6
s^2
[
(a)5
2cos 3t (b) 6t]- (a)
5
s^3(b)8
s^4[
(a)5
2t^2 (b)4
3t^3]- (a)
3 s
1
2s^2 − 8(b)7
s^2 − 16[
(a) 6 cosh 4t (b)7
4sinh 4t]- (a)
15
3 s^2 − 27(b)4
(s−1)^3
[
(a)5
3sinh 3t (b) 2 ett^2]- (a)
1
(s+2)^4(b)3
(s−3)^5
[
(a)1
6e−^2 tt^3 (b)1
8e^3 tt^4]- (a)
s+ 1
s^2 + 2 s+ 10(b)3
s^2 + 6 s+ 13
[
(a) e−tcos 3t (b)3
2e−^3 tsin 2t]- (a)
2(s−3)
s^2 − 6 s+ 13(b)7
s^2 − 8 s+ 12
[
(a)2e^3 tcos 2t (b)7
2e^4 tsinh 2t]- (a)
2 s+ 5
s^2 + 4 s− 5(b)3 s+ 2
s^2 − 8 s+ 25
⎡⎢
⎣(a) 2e−^2 tcosh 3t+1
3e−^2 tsinh 3t(b) 3e^4 tcos 3t+14
3e^4 tsin 3t⎤⎥
⎦66.3 Inverse Laplace transforms using
partial fractionsSometimes the function whose inverse is required
is not recognisable as a standard type, such as those
listed in Table 66.1. In such cases it may be possible,
by using partial fractions, to resolve the function into