THE SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 647K
Equating s^2 terms gives: 0=A+C, from
which,A=−1, sinceC=1. Hence,L−^1{
9
s^2 (s−3)}
=L−^1{
−1
s−3
s^2+1
s− 3}=− 1 − 3 x+e^3 x, from (i),(vi) and (iii) of Table 66.1.i.e.y=e^3 x− 3 x− 1Problem 4. Use Laplace transforms to solve
the differential equation:d^2 y
dx^2− 7dy
dx+ 10 y=e^2 x+20, given that whenx=0,y=0 anddy
dx=−1
3Using the procedure:
(i)L{
d^2 y
dx^2}
− 7 L{
dy
dx}
+ 10 L{y}=L{e^2 x+ 20 }Hence [s^2 L{y}−sy(0)−y′(0)]−7[sL{y}−y(0)]+ 10 L{y}=1
s− 2+20
s(ii)y(0)=0 andy′(0)=−1
3Hence s^2 L{y}− 0 −(
−1
3)
− 7 sL{y}+ 0+ 10 L{y}=21 s− 40
s(s−2)(iii) (s^2 − 7 s+10)L{y}=
21 s− 40
s(s−2)−1
3=3(21s−40)−s(s−2)
3 s(s−2)=−s^2 + 65 s− 120
3 s(s−2)Hence L{y}=−s^2 + 65 s− 120
3 s(s−2)(s^2 − 7 s+10)=1
3[
−s^2 + 65 s− 120
s(s−2)(s−2)(s−5)]=1
3[
−s^2 + 65 s− 120
s(s−5)(s−2)^2](iv)y=1
3L−^1{
−s^2 + 65 s− 120
s(s−5)(s−2)^2}−s^2 + 65 s− 120
s(s−5)(s−2)^2≡A
s+B
s− 5+C
s− 2+D
(s−2)^2≡(
A(s−5)(s−2)^2 +B(s)(s−2)^2
+C(s)(s−5)(s−2)+D(s)(s−5))s(s−5)(s−2)^2
Hence−s^2 + 65 s− 120≡A(s−5)(s−2)^2 +B(s)(s−2)^2+C(s)(s−5)(s−2)+D(s)(s−5)
Whens=0,− 120 =− 20 A, from which,A=6.Whens=5, 180= 45 B, from which,B=4.Whens=2, 6=− 6 D, from which,D=−1.Equatings^3 terms gives: 0=A+B+C, from
which,C=−10.Hence1
3L−^1{
−s^2 + 65 s− 120
s(s−5)(s−2)^2}=1
3L−^1{
6
s+4
s− 5−10
s− 2−1
(s−2)^2}=1
3[6+4e^5 x−10 e^2 x−xe^2 x]Thusy= 2 +4
3e^5 x−10
3e^2 x−x
3e^2 xProblem 5. The current flowing in an electri-
cal circuit is given by the differential equation
Ri+L(di/dt)=E, whereE,LandRare con-
stants. Use Laplace transforms to solve the
equation for current igiven that whent=0,
i=0.Using the procedure:(i)L{Ri}+L{
Ldi
dt}
=L{E}i.e. RL{i}+L[sL{i}−i(0)]=E
s