648 LAPLACE TRANSFORMS
(ii)i(0)=0, henceRL{i}+LsL{i}=
E
s
(iii) Rearranging gives:
(R+Ls)L{i}=
E
s
i.e. L{i}=
E
s(R+Ls)
(iv)i=L−^1
{
E
s(R+Ls)
}
E
s(R+Ls)
≡
A
s
+
B
R+Ls
≡
A(R+Ls)+Bs
s(R+Ls)
Hence E=A(R+Ls)+Bs
When s=0,E=AR,
from which, A=
E
R
When s=−
R
L
,E=B
(
−
R
L
)
from which, B=−
EL
R
HenceL−^1
{
E
s(R+Ls)
}
=L−^1
{
E/R
s
+
−EL/R
R+Ls
}
=L−^1
{
E
Rs
−
EL
R(R+Ls)
}
=L−^1
⎧
⎪⎨
⎪⎩
E
R
(
1
s
)
−
E
R
⎛
⎜
⎝
1
R
L
+s
⎞
⎟
⎠
⎫
⎪⎬
⎪⎭
=
E
R
L−^1
⎧
⎪⎪
⎨
⎪⎪
⎩
1
s
−
1
(
s+
R
L
)
⎫
⎪⎪
⎬
⎪⎪
⎭
Hencecurrenti=
E
R
(
1 −e−
Rt
L
)
Now try the following exercise.
Exercise 238 Further problems on solving
differential equations using Laplace trans-
forms
- A first order differential equation involving
currentiin a seriesR−Lcircuit is given by:
di
dt
+ 5 i=
E
2
andi=0 at timet=0.
Use Laplace transforms to solve for i
when (a)E=20 (b)E=40 e−^3 t and (c)
E=50 sin 5t.
⎡
⎢
⎢
⎣
(a)i=2(1−e−^5 t)
(b)i=10( e−^3 t−e−^5 t)
(c)i=
5
2
(e−^5 t−cos 5t+sin 5t)
⎤
⎥
⎥
⎦
In Problems 2 to 9, use Laplace transforms to
solve the given differential equations.
- 9
d^2 y
dt^2
− 24
dy
dt
+ 16 y=0, given y(0)= 3
andy′(0)=3.
[
y=(3−t)e
4
3 t
]
3.
d^2 x
dt^2
+ 100 x=0, given x(0)= 2 and
x′(0)=0. [x=2 cos 10t]
4.
d^2 i
dt^2
+ 1000
di
dt
+ 250000 i=0, given
i(0)=0 andi′(0)=100. [i= 100 te−^500 t]
5.
d^2 x
dt^2
+ 6
dx
dt
+ 8 x=0, givenx(0)=4 and
x′(0)=8. [x=4(3e−^2 t−2e−^4 t)]
6.
d^2 y
dx^2
− 2
dy
dx
+y=3e^4 x,giveny(0)=−
2
3
andy′(0)= 4
1
(^3) [
y=(4x−1) ex+
1
3
e^4 x
]
7.
d^2 y
dx^2
- 16 y=10 cos 4x,giveny(0)=3 and
y′(0)=4.
[
y=3 cos 4x+sin 4x+
5
4
xsin 4x
]