648 LAPLACE TRANSFORMS(ii)i(0)=0, henceRL{i}+LsL{i}=E
s(iii) Rearranging gives:
(R+Ls)L{i}=E
si.e. L{i}=E
s(R+Ls)(iv)i=L−^1{
E
s(R+Ls)}E
s(R+Ls)≡A
s+B
R+Ls≡A(R+Ls)+Bs
s(R+Ls)Hence E=A(R+Ls)+BsWhen s=0,E=AR,from which, A=E
RWhen s=−R
L,E=B(
−R
L)from which, B=−EL
RHenceL−^1{
E
s(R+Ls)}=L−^1{
E/R
s+−EL/R
R+Ls}=L−^1{
E
Rs−EL
R(R+Ls)}=L−^1⎧
⎪⎨⎪⎩E
R(
1
s)
−E
R⎛⎜
⎝1
R
L+s⎞⎟
⎠⎫
⎪⎬⎪⎭=E
RL−^1⎧
⎪⎪
⎨⎪⎪
⎩1
s−1
(
s+R
L)⎫
⎪⎪
⎬⎪⎪
⎭Hencecurrenti=E
R(
1 −e−Rt
L)Now try the following exercise.Exercise 238 Further problems on solving
differential equations using Laplace trans-
forms- A first order differential equation involving
currentiin a seriesR−Lcircuit is given by:
di
dt
+ 5 i=E
2andi=0 at timet=0.Use Laplace transforms to solve for i
when (a)E=20 (b)E=40 e−^3 t and (c)
E=50 sin 5t.
⎡⎢
⎢
⎣(a)i=2(1−e−^5 t)
(b)i=10( e−^3 t−e−^5 t)(c)i=5
2(e−^5 t−cos 5t+sin 5t)⎤⎥
⎥
⎦In Problems 2 to 9, use Laplace transforms to
solve the given differential equations.- 9
d^2 y
dt^2− 24dy
dt+ 16 y=0, given y(0)= 3andy′(0)=3.[
y=(3−t)e4
3 t]3.d^2 x
dt^2+ 100 x=0, given x(0)= 2 andx′(0)=0. [x=2 cos 10t]4.d^2 i
dt^2+ 1000di
dt+ 250000 i=0, giveni(0)=0 andi′(0)=100. [i= 100 te−^500 t]5.d^2 x
dt^2+ 6dx
dt+ 8 x=0, givenx(0)=4 andx′(0)=8. [x=4(3e−^2 t−2e−^4 t)]6.d^2 y
dx^2− 2dy
dx+y=3e^4 x,giveny(0)=−2
3
andy′(0)= 41(^3) [
y=(4x−1) ex+
1
3
e^4 x
]
7.
d^2 y
dx^2
- 16 y=10 cos 4x,giveny(0)=3 and
y′(0)=4.
[
y=3 cos 4x+sin 4x+
5
4
xsin 4x
]