THE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 653K
Returning to equations (A) to determineL{x}and
hencex:
(2s−1)×equation (1′′′) and 5s×(2′′′) gives:
(2s−1)(3s+2)L{x}− 5 s(2s−1)L{y}=(2s−1)(
6
s+ 9)
(5)and −s(5s)L{x}+ 5 s(2s−1)L{y}
= 5 s(
−1
s− 2)
(6)i.e. (6s^2 +s−2)L{x}− 5 s(2s−1)L{y}
= 12 + 18 s−6
s−9( 5 ′)and − 5 s^2 L{x}+ 5 s(2s−1)L{y}
=− 5 − 10 s (6′)Adding equations (5′) and (6′) gives:
(s^2 +s−2)L{x}=− 2 + 8 s−
6
s=− 2 s+ 8 s^2 − 6
sfrom which, L{x}=
8 s^2 − 2 s− 6
s(s^2 +s−2)=8 s^2 − 2 s− 6
s(s+2)(s−1)Using partial fractions
8 s^2 − 2 s− 6
s(s+2)(s−1)≡A
s+B
(s+2)+C
(s−1)=A(s+2)(s−1)+Bs(s−1)+Cs(s+2)
s(s+2)(s−1)i.e. 8 s^2 − 2 s− 6 =A(s+2)(s−1)
+Bs(s−1)+Cs(s+2)When s=0,− 6 =− 2 A, hence A= 3
When s=1, 0= 3 C, hence C= 0
When s=−2, 30= 6 B, hence B= 5
Thus L{x}=8 s^2 − 2 s− 6
s(s+2)(s−1)=3
s+5
(s+2)Hence x=L−^1{
3
s+5
s+ 2}
= 3 +5e−^2 tTherefore the solutions of the given simultaneous
differential equations arey= 1 +2e−^2 t and x= 3 +5e−^2 t(These solutions may be checked by substituting the
expressions forxandyinto the original equations.)Problem 3. Solve the following pair of simul-
taneous differential equationsd^2 x
dt^2−x=yd^2 y
dt^2+y=−xgiven that at t=0, x=2, y=−1,dx
dt= 0anddy
dt=0.Using the procedure:(i) [s^2 L{x}−sx(0)−x′(0)]−L{x}=L{y} (1)
[s^2 L{y}−sy(0)−y′(0)]+L{y}=−L{x} (2)
from equation (4), page 635(ii)x(0)=2,y(0)=−1,x′(0)=0 andy′(0)= 0hence s^2 L{x}− 2 s−L{x}=L{y} (1′)s^2 L{y}+s+L{y}=−L{x} (2′)(iii) Rearranging gives:(s^2 −1)L{x}−L{y}= 2 s (3)L{x}+(s^2 +1)L{y}=−s (4)Equation (3)×(s^2 +1) and equation (4)× 1
gives:(s^2 +1)(s^2 −1)L{x}−(s^2 +1)L{y}
=(s^2 +1)2s (5)L{x}+(s^2 +1)L{y}=−s (6)