654 LAPLACE TRANSFORMS
Adding equations (5) and (6) gives:[(s^2 +1)(s^2 −1)+1]L{x}=(s^2 +1)2s−s
i.e. s^4 L{x}= 2 s^3 +s=s(2s^2 +1)from which, L{x}=s(2s^2 +1)
s^4=2 s^2 + 1
s^3=2 s^2
s^3+1
s^3=2
s+1
s^3(iv) Hence x=L−^1{
2
s+1
s^3}i.e. x= 2 +1
2t^2Returning to equations (3) and (4) to deter-
miney:
1 ×equation (3) and (s^2 −1)×equation (4)
gives:(s^2 −1)L{x}−L{y}= 2 s (7)(s^2 −1)L{x}+(s^2 −1)(s^2 +1)L{y}
=−s(s^2 −1) (8)
Equation (7)−equation (8) gives:[− 1 −(s^2 −1)(s^2 +1)]L{y}= 2 s+s(s^2 −1)i.e. −s^4 L{y}=s^3 +sand L{y}=s^3 +s
−s^4=−1
s−1
s^3from which, y=L−^1{
−1
s−1
s^3}i.e. y=− 1 −1
2t^2Now try the following exercise.Exercise 239 Further problems on solving
simultaneous differential equations using
Laplace transformsSolve the following pairs of simultaneous dif-
ferential equations:1. 2dx
dt+dy
dt=5etdy
dt− 3dx
dt= 5given that whent=0,x=0 andy= 0
[x=et−t−1 andy= 2 t− 3 + 3 et]2. 2dy
dt−y+x+dx
dt−5 sint= 03dy
dt+x−y+ 2dx
dt−et= 0given that att=0,x=0 andy= 0
[
x=5 cost+5 sint−e^2 t−et−3 and
y=e^2 t+ 2 et− 3 −5 sint]3.d^2 x
dt^2+ 2 x=yd^2 y
dt^2+ 2 y=xgiven that att=0,x=4,y=2,dx
dt= 0anddy
dt= 0
[
x=3 cost+cos (√
3 t) and
y=3 cost−cos (√
3 t)]