FOURIER SERIES FOR A NON-PERIODIC FUNCTION OVER RANGE 2π 665L
an=
1
π∫ 2 π0f(x) cosnxdx=1
π[∫π0xcosnxdx+∫ 2 ππ0dx]=1
π[
xsinnx
n+cosnx
n^2]π0
(from Problem 1, by parts)=1
π{[
πsinnπ
n+cosnπ
n^2]
−[
0 +cos 0
n^2]}=1
πn^2( cosnπ−1)Whennis even,an=0.
Whennis odd,an=
− 2
πn^2.Hencea 1 =
− 2
π,a 3 =− 2
32 π,a 5 =− 2
52 π, and so onbn=
1
π∫ 2 π0f(x) sinnxdx=1
π[∫π0xsinnxdx−∫ 2 ππ0dx]=1
π[
−xcosnx
n+sinnx
n^2]π0(from Problem 1, by parts)=1
π{[
−πcosnπ
n+sinnπ
n^2]
−[
0 +sin 0
n^2]}=1
π[
−πcosnπ
n]
=−cosnπ
nHence b 1 =−cosπ=1, b 2 =−
1
2, b 3 =1
3, andso on.
Thus the Fourier series is:
f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)i.e. f(x)=
π
4−2
πcosx−2
32 πcos 3x−2
52 πcos 5x−···+sinx−1
2sin 2x+1
3sin 3x−···i.e. f(x)=π
4−2
π(
cosx+cos 3x
32+cos 5x
52+···)+(
sinx−1
2sin 2x+1
3sin 3x−···)Problem 4. For the Fourier series of Prob-
lem 3: (a) what is the sum of the series at the
point of discontinuity (i.e. atx=π)? (b) what
is the amplitude and phase angle of the third
harmonic? and (c) letx=0, and deduce a series
forπ^2 /8.(a) The sum of the Fourier series at the point of
discontinuity is given by the arithmetic mean of
the two limiting values off(x)asxapproaches
the point of discontinuity from the two sides.
Hence sum of the series atx=πis
π− 0
2=π
2
(b) The third harmonic term of the Fourier series is
(
−2
32 πcos 3x+1
3sin 3x)This may also be written in the form
csin (3x+α),where amplitude,c=√
√
√
√[(
− 2
32 π) 2
+(
1
3) 2 ]= 0. 341
and phase angle,α=tan−^1⎛⎜
⎝− 2
32 π
1
3⎞⎟
⎠=− 11. 98 ◦ or − 0 .209 radians
Hence the third harmonic is given by
0 .341 sin(3x− 0 .209)(c) Whenx=0,f(x)=0 (see Fig. 70.3).
Hence, from the Fourier series:0 =π
4−2
π(
cos 0+1
32cos 0+1
52cos 0+···)
+(0)i.e. −π
4=−2
π(
1 +1
32+1
52+1
72+···)