678 FOURIER SERIES=1
4{∫− 1− 20dx+∫ 1− 15dx+∫ 210dx}=1
4[5x]^1 − 1 =1
4[(5)−(−5)]=10
4=5
2an=2
L∫L
2
−L
2f(x) cos(
2 πnx
L)
dx=2
4∫ 2− 2f(x) cos(
2 πnx
4)
dx=1
2{∫− 1− 20 cos(πnx2)
dx+∫ 1− 15 cos(πnx2)
dx+∫ 210 cos(πnx2)
dx}=5
2⎡⎢
⎣sinπnx
2
πn
2⎤⎥
⎦1− 1=5
πn[
sin(πn2)
−sin(
−πn
2)]Whennis even,an= 0
Whennis odd,
a 1 =5
π(1−(−1))=10
πa 3 =5
3 π(− 1 −1)=− 10
3 πa 5 =5
5 π(1−(−1))=10
5 πand so on.Hence the Fourier series for the functionf(x)is
given by:f(x)=5
2+10
π[
cos(πx2)
−1
3cos(
3 πx
2)+1
5cos(
5 πx
2)
−1
7cos(
7 πx
2)
+ ···]Problem 3. Determine the Fourier series for
the functionf(t)=tin the ranget=0tot=3.The functionf(t)=tin the interval 0 to 3 is shown
in Fig. 72.3. Although the function is not periodic
it may be constructed outside of this range so that
Period L = 3− 3 0 3 6 tf(t)
f(t) = tFigure 72.3it is periodic of period 3, as shown by the broken
lines in Fig. 72.3. From para. (c), the Fourier series
is given by:f(t)=a 0 +∑∞n= 1[
ancos(
2 πnt
L)+bnsin(
2 πnt
L)]a 0 =1
L∫L 2−L
2f(t)dx=1
L∫L0f(t)dx=1
3∫ 30tdt=1
3[
t^2
2] 30=3
2an =2
L∫L
2
−L
2f(t) cos(
2 πnt
L)
dt=2
L∫L0tcos(
2 πnt
L)
dt=2
3∫ 30tcos(
2 πnt
3)
dt=2
3⎡⎢
⎢
⎢
⎣tsin(
2 πnt
3)(
2 πn
3) +cos(
2 πnt
3)(
2 πn
3) 2⎤⎥
⎥
⎥
⎦30
by parts=2
3⎡⎢
⎢
⎢
⎣⎧
⎪⎪
⎪⎨⎪⎪
⎪⎩3 sin 2πn
(
2 πn
3) +cos 2πn
(
2 πn
3) 2⎫
⎪⎪
⎪⎬⎪⎪
⎪⎭−⎧
⎪⎪
⎪⎨⎪⎪
⎪⎩0 +cos 0
(
2 πn
3) 2⎫
⎪⎪
⎪⎬⎪⎪
⎪⎭⎤⎥
⎥
⎥
⎦= 0