Higher Engineering Mathematics

(Greg DeLong) #1
FOURIER SERIES OVER ANY RANGE 679

L

bn=

2
L

∫ L
2
−L
2

f(t) sin

(
2 πnt
L

)
dt

=

2
L

∫L

0

tsin

(
2 πnt
L

)
dt

=

2
3

∫ 3

0

tsin

(
2 πnt
3

)
dt

=

2
3






−tcos

(
2 πnt
3

)

(
2 πn
3

) +

sin

(
2 πnt
3

)

(
2 πn
3

) 2






3

0
by parts

=

2
3







⎪⎪
⎪⎨

⎪⎪
⎪⎩

−3 cos 2πn
(
2 πn
3

) +

sin 2πn
(
2 πn
3

) 2


⎪⎪
⎪⎬

⎪⎪
⎪⎭



⎪⎪
⎪⎨

⎪⎪
⎪⎩

0 +

sin 0
(
2 πn
3

) 2


⎪⎪
⎪⎬

⎪⎪
⎪⎭

⎤ ⎥ ⎥ ⎥ ⎦ =

2
3





−3 cos 2πn
(
2 πn
3

)




⎦=

− 3
πn

cos 2πn=

− 3
πn

Henceb 1 =


− 3
π

,b 2 =

− 3
2 π

,b 3 =

− 3
3 π

and so on.

Thus the Fourier series for the functionf(t)inthe
range 0 to 3 is given by:


f(t)=

3
2


3
π

[
sin

(
2 πt
3

)
+

1
2

sin

(
4 πt
3

)

+

1
3

sin

(
6 πt
3

)
+ ···

]

Now try the following exercise.


Exercise 244 Further problems on Fourier
series over any rangeL


  1. The voltage from a square wave generator is
    of the form:


v(t)=

{
0, − 10 <t< 0
5, 0 <t< 10

and is periodic of period 20. Show that the
Fourier series for the function is given by:

v(t)=

5
2

+

10
π

[
sin

(
πt
10

)
+

1
3

sin

(
3 πt
10

)

+

1
5

sin

(
5 πt
10

)
+···

]


  1. Find the Fourier series forf(x)=xin the
    rangex=0tox=5.
    ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
    f(x) =


5
2


5
π

[
sin

(
2 πx
5

)

+

1
2

sin

(
4 πx
5

)

+

1
3

sin

(
6 πx
5

)
+···

]

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. A periodic function of period 4 is defined by:


f(x)=

{
−3, − 2 <x< 0
+3, 0 <x< 2
Sketch the function and obtain the Fourier
series for the function.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x) =

12
π

(
sin

(πx

2

)

+

1
3

sin

(
3 πx
2

)

+

1
5

sin

(
5 πx
2

)
+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


  1. Determine the Fourier series for the half
    wave rectified sinusoidal voltage Vsinωt
    defined by:


f(t)=


⎪⎨

⎪⎩

Vsinωt,0<t<

π
ω

0,

π
ω

<t<

2 π
ω

which is periodic of period

2 π
ω ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

f(t) =

V
π

+

V
2

sinωt


2 V
π

(
cos 2ωt
(1)(3)

+

cos 4ωt
(3)(5)

+

cos 6ωt
(5)(7)

+···

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Free download pdf