FOURIER SERIES OVER ANY RANGE 679L
bn=2
L∫ L
2
−L
2f(t) sin(
2 πnt
L)
dt=2
L∫L0tsin(
2 πnt
L)
dt=2
3∫ 30tsin(
2 πnt
3)
dt=2
3⎡⎢
⎢
⎢
⎣−tcos(
2 πnt
3)(
2 πn
3) +sin(
2 πnt
3)(
2 πn
3) 2⎤⎥
⎥
⎥
⎦30
by parts=2
3⎡⎢
⎢
⎢
⎣⎧
⎪⎪
⎪⎨⎪⎪
⎪⎩−3 cos 2πn
(
2 πn
3) +sin 2πn
(
2 πn
3) 2⎫
⎪⎪
⎪⎬⎪⎪
⎪⎭−⎧
⎪⎪
⎪⎨⎪⎪
⎪⎩0 +sin 0
(
2 πn
3) 2⎫
⎪⎪
⎪⎬⎪⎪
⎪⎭⎤ ⎥ ⎥ ⎥ ⎦ =2
3⎡⎢
⎢
⎣−3 cos 2πn
(
2 πn
3)⎤⎥
⎥
⎦=− 3
πncos 2πn=− 3
πnHenceb 1 =
− 3
π,b 2 =− 3
2 π,b 3 =− 3
3 πand so on.Thus the Fourier series for the functionf(t)inthe
range 0 to 3 is given by:
f(t)=3
2−3
π[
sin(
2 πt
3)
+1
2sin(
4 πt
3)+1
3sin(
6 πt
3)
+ ···]Now try the following exercise.
Exercise 244 Further problems on Fourier
series over any rangeL- The voltage from a square wave generator is
of the form:
v(t)={
0, − 10 <t< 0
5, 0 <t< 10and is periodic of period 20. Show that the
Fourier series for the function is given by:v(t)=5
2+10
π[
sin(
πt
10)
+1
3sin(
3 πt
10)+1
5sin(
5 πt
10)
+···]- Find the Fourier series forf(x)=xin the
rangex=0tox=5.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x) =
5
2−5
π[
sin(
2 πx
5)+1
2sin(
4 πx
5)+1
3sin(
6 πx
5)
+···]⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- A periodic function of period 4 is defined by:
f(x)={
−3, − 2 <x< 0
+3, 0 <x< 2
Sketch the function and obtain the Fourier
series for the function.
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
f(x) =12
π(
sin(πx2)+1
3sin(
3 πx
2)+1
5sin(
5 πx
2)
+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦- Determine the Fourier series for the half
wave rectified sinusoidal voltage Vsinωt
defined by:
f(t)=⎧
⎪⎨⎪⎩Vsinωt,0<t<π
ω0,π
ω<t<2 π
ωwhich is periodic of period2 π
ω ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣f(t) =V
π+V
2sinωt−2 V
π(
cos 2ωt
(1)(3)+cos 4ωt
(3)(5)+cos 6ωt
(5)(7)+···)⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦