Ess-For-H8152.tex 19/7/2006 18: 2 Page 706
706 ESSENTIAL FORMULAEArithmetic progression:Ifa=first term andd=common difference, then
the arithmetic progression is:a,a+d,a+ 2 d,...
Then’th term is:a+(n−1)dSum ofnterms,Sn=n
2[2a+(n−1)d]Geometric progression:Ifa=first term andr=common ratio, then the
geometric progression is:a,ar,ar^2 ,...
Then’th term is:arn−^1Sum ofnterms,Sn=a(1−rn)
(1−r)ora(rn−1)
(r−1)If− 1 <r<1,S∞=a
(1−r)Binomial series:(a+b)n=an+nan−^1 b+n(n−1)
2!an−^2 b^2+n(n−1)(n−2)
3!an−^3 b^3 +···(1+x)n= 1 +nx+n(n−1)
2!x^2+n(n−1)(n−2)
3!x^3 +···Maclaurin’s seriesf(x)=f(0)+xf′(0)+x^2
2!f′′(0)+x^3
3!f′′′(0)+···Newton Raphson iterative methodIfr 1 is the approximate value for a real root of the
equationf(x)=0, then a closer approximation to the
root,r 2 , is given by:r 2 =r 1 −f(r 1 )
f′(r 1 )Boolean algebraLaws and rules of Boolean algebra
Commutative Laws: A+B=B+A
A·B=B·A
Associative Laws: A+B+C=(A+B)+C
A·B·C=(A·B)·C
Distributive Laws: A·(B+C)=A·B+A·C
A+(B·C)=(A+B)·(A+C)
Sum rules: A+A= 1
A+ 1 = 1
A+ 0 =A
A+A=A
Product rules: A·A= 0
A· 0 = 0
A· 1 =A
A·A=A
Absorption rules: A+A·B=A
A·(A+B)=A
A+A·B=A+B
De Morgan’s Laws: A+B=A·B
A·B=A+BGeometry and Trigonometry
Theorem of Pythagoras:b^2 =a^2 +c^2Figure FA1Identities:secθ=1
cosθ, cosecθ=1
sinθ,cotθ=1
tanθ, tanθ=sinθ
cosθ
cos^2 θ+sin^2 θ= 11 +tan^2 θ=sec^2 θ
cot^2 θ+ 1 =cosec^2 θ