Ess-For-H8152.tex 19/7/2006 18: 2 Page 707
ESSENTIAL FORMULAE 707
Triangle formulae:
With reference to Fig. FA2:
Sine rule
a
sinA
=
b
sinB
=
c
sinC
Cosine rule a^2 =b^2 +c^2 − 2 bccosA
Figure FA2
Area of any triangle
(i)^12 ×base×perpendicular height
(ii)^12 absinCor^12 acsinBor^12 bcsinA
(iii)
√
[s(s−a)(s−b)(s−c)] wheres=
a+b+c
2
Compound angle formulae
sin (A±B)=sinAcosB±cosAsinB
cos(A±B)=cosAcosB∓sinAsinB
tan (A±B)=
tanA±tanB
1 ∓tanAtanB
IfRsin(ωt+α)=asinωt+bcosωt,
then a=Rcosα, b=Rsinα,
R=
√
(a^2 +b^2 ) andα=tan−^1
b
a
Double angles
sin 2A=2 sinAcosA
cos 2A=cos^2 A−sin^2 A=2 cos^2 A− 1
= 1 −2 sin^2 A
tan 2A=
2 tanA
1 −tan^2 A
Products of sines and cosines into sums or differences
sinAcosB=^12 [sin(A+B)+sin (A−B)]
cosAsinB=^12 [sin(A+B)−sin (A−B)]
cosAcosB=^12 [cos(A+B)+cos (A−B)]
sinAsinB=−^12 [cos(A+B)−cos (A−B)]
Sums or differences of sines and cosines into products
sinx+siny=2 sin
(
x+y
2
)
cos
(
x−y
2
)
sinx−siny=2 cos
(
x+y
2
)
sin
(
x−y
2
)
cosx+cosy=2 cos
(
x+y
2
)
cos
(
x−y
2
)
cosx−cosy=−2 sin
(
x+y
2
)
sin
(
x−y
2
)
For ageneral sinusoidal function
y=Asin(ωt±α), then
A=amplitude
ω=angular velocity= 2 πfrad/s
2 π
ω
=periodic timeTseconds
ω
2 π
=frequency,fhertz
α=angle of lead or lag (compared with
y=Asinωt)
Cartesian and polar co-ordinates
If co-ordinate (x,y)=(r,θ) thenr=
√
x^2 +y^2 and
θ=tan−^1
y
x
If co-ordinate (r,θ)=(x,y) thenx=rcosθ and
y=rsinθ.
The circle
With reference to Fig. FA3.
Area=πr^2 Circumference= 2 πr
πradians= 180 ◦