Ess-For-H8152.tex 19/7/2006 18: 2 Page 707
ESSENTIAL FORMULAE 707Triangle formulae:With reference to Fig. FA2:Sine rulea
sinA=b
sinB=c
sinCCosine rule a^2 =b^2 +c^2 − 2 bccosAFigure FA2Area of any triangle(i)^12 ×base×perpendicular height(ii)^12 absinCor^12 acsinBor^12 bcsinA(iii)√
[s(s−a)(s−b)(s−c)] wheres=a+b+c
2Compound angle formulaesin (A±B)=sinAcosB±cosAsinB
cos(A±B)=cosAcosB∓sinAsinBtan (A±B)=tanA±tanB
1 ∓tanAtanBIfRsin(ωt+α)=asinωt+bcosωt,
then a=Rcosα, b=Rsinα,R=√
(a^2 +b^2 ) andα=tan−^1b
aDouble anglessin 2A=2 sinAcosAcos 2A=cos^2 A−sin^2 A=2 cos^2 A− 1= 1 −2 sin^2 Atan 2A=2 tanA
1 −tan^2 AProducts of sines and cosines into sums or differencessinAcosB=^12 [sin(A+B)+sin (A−B)]cosAsinB=^12 [sin(A+B)−sin (A−B)]cosAcosB=^12 [cos(A+B)+cos (A−B)]sinAsinB=−^12 [cos(A+B)−cos (A−B)]Sums or differences of sines and cosines into productssinx+siny=2 sin(
x+y
2)
cos(
x−y
2)sinx−siny=2 cos(
x+y
2)
sin(
x−y
2)cosx+cosy=2 cos(
x+y
2)
cos(
x−y
2)cosx−cosy=−2 sin(
x+y
2)
sin(
x−y
2)For ageneral sinusoidal function
y=Asin(ωt±α), thenA=amplitude
ω=angular velocity= 2 πfrad/s
2 π
ω=periodic timeTsecondsω
2 π=frequency,fhertzα=angle of lead or lag (compared withy=Asinωt)Cartesian and polar co-ordinatesIf co-ordinate (x,y)=(r,θ) thenr=√
x^2 +y^2 and
θ=tan−^1y
x
If co-ordinate (r,θ)=(x,y) thenx=rcosθ and
y=rsinθ.The circleWith reference to Fig. FA3.Area=πr^2 Circumference= 2 πr
πradians= 180 ◦