Ess-For-H8152.tex 19/7/2006 18: 2 Page 708
708 ESSENTIAL FORMULAE
s
θ
r
r
Figure FA3
For sector of circle:
s=rθ (θin rad)
shaded area=^12 r^2 θ (θin rad)
Equation of a circle, centre at (a, b), radius r:
(x−a)^2 +(y−b)^2 =r^2
Linear and angular velocity
If v=linear velocity (m/s), s=displacement (m),
t=time (s),n=speed of revolution (rev/s),
θ=angle (rad),ω=angular velocity (rad/s),
r=radius of circle (m) then:
v=
s
t
ω=
θ
t
= 2 πn v=ωr
centripetal force=
mv^2
r
wherem=mass of rotating object.
Graphs
Equations of functions
Equation of a straight line: y=mx+c
Equation of a parabola: y=ax^2 +bx+c
Circle, centre (a, b), radius r:
(x−a)^2 +(y−b)^2 =r^2
Equation of an ellipse, centre at origin, semi-axes
a and b:
x^2
a^2
+
y^2
b^2
= 1
Equation of a hyperbola:
x^2
a^2
−
y^2
b^2
= 1
Equation of a rectangular hyperbola: xy=c^2
Irregular areas
Trapezoidal rule
Area≈
(
width of
interval
)[
1
2
(
first+last
ordinates
)
+
(
sum of remaining
ordinates
)]
Mid-ordinate rule
Area≈
(
width of
interval
)(
sum of
mid-ordinates
)
Simpson’s rule
Area≈
1
3
(
width of
interval
)[(
first+last
ordinate
)
+ 4
(
sum of even
ordinates
)
+ 2
(
sum of remaining
odd ordinates
)]
Vector Geometry
Ifa=a 1 i+a 2 j+a 3 kandb=b 1 i+b 2 j+b 3 k
a·b=a 1 b 1 +a 2 b 2 +a 3 b 3
|a|=
√
a^21 +a^22 +a^23 cosθ=
a·b
|a||b|
a×b=
∣
∣
∣
∣
∣
ijk
a 1 a 2 a 3
b 1 b 2 b 3
∣
∣
∣
∣
∣
|a×b|=
√
[(a·a)(b·b)−(a·b)^2 ]
Complex Numbers
z=a+jb=r(cosθ+jsinθ)=r∠θ=rejθ where
j^2 =− 1
Modulusr=|z|=
√
(a^2 +b^2 )
Argumentθ=argz=tan−^1
b
a
Addition:(a+jb)+(c+jd)=(a+c)+j(b+d)
Subtraction:(a+jb)−(c+jd)=(a−c)+j(b−d)