Higher Engineering Mathematics

(Greg DeLong) #1

Ess-For-H8152.tex 19/7/2006 18: 2 Page 708


708 ESSENTIAL FORMULAE

s

θ

r

r

Figure FA3

For sector of circle:
s=rθ (θin rad)

shaded area=^12 r^2 θ (θin rad)

Equation of a circle, centre at (a, b), radius r:

(x−a)^2 +(y−b)^2 =r^2

Linear and angular velocity

If v=linear velocity (m/s), s=displacement (m),
t=time (s),n=speed of revolution (rev/s),
θ=angle (rad),ω=angular velocity (rad/s),
r=radius of circle (m) then:

v=

s
t

ω=

θ
t

= 2 πn v=ωr

centripetal force=

mv^2
r
wherem=mass of rotating object.

Graphs


Equations of functions

Equation of a straight line: y=mx+c
Equation of a parabola: y=ax^2 +bx+c
Circle, centre (a, b), radius r:
(x−a)^2 +(y−b)^2 =r^2
Equation of an ellipse, centre at origin, semi-axes

a and b:

x^2
a^2

+

y^2
b^2

= 1

Equation of a hyperbola:

x^2
a^2


y^2
b^2

= 1

Equation of a rectangular hyperbola: xy=c^2

Irregular areas

Trapezoidal rule

Area≈

(
width of
interval

)[
1
2

(
first+last
ordinates

)

+

(
sum of remaining
ordinates

)]

Mid-ordinate rule

Area≈

(
width of
interval

)(
sum of
mid-ordinates

)

Simpson’s rule

Area≈

1
3

(
width of
interval

)[(
first+last
ordinate

)

+ 4

(
sum of even
ordinates

)

+ 2

(
sum of remaining
odd ordinates

)]

Vector Geometry


Ifa=a 1 i+a 2 j+a 3 kandb=b 1 i+b 2 j+b 3 k

a·b=a 1 b 1 +a 2 b 2 +a 3 b 3

|a|=


a^21 +a^22 +a^23 cosθ=

a·b
|a||b|

a×b=






ijk
a 1 a 2 a 3
b 1 b 2 b 3






|a×b|=


[(a·a)(b·b)−(a·b)^2 ]

Complex Numbers


z=a+jb=r(cosθ+jsinθ)=r∠θ=rejθ where
j^2 =− 1

Modulusr=|z|=


(a^2 +b^2 )

Argumentθ=argz=tan−^1

b
a
Addition:(a+jb)+(c+jd)=(a+c)+j(b+d)
Subtraction:(a+jb)−(c+jd)=(a−c)+j(b−d)
Free download pdf