Ess-For-H8152.tex 19/7/2006 18: 2 Page 708
708 ESSENTIAL FORMULAEsθrrFigure FA3For sector of circle:
s=rθ (θin rad)shaded area=^12 r^2 θ (θin rad)Equation of a circle, centre at (a, b), radius r:(x−a)^2 +(y−b)^2 =r^2Linear and angular velocityIf v=linear velocity (m/s), s=displacement (m),
t=time (s),n=speed of revolution (rev/s),
θ=angle (rad),ω=angular velocity (rad/s),
r=radius of circle (m) then:v=s
tω=θ
t= 2 πn v=ωrcentripetal force=mv^2
r
wherem=mass of rotating object.Graphs
Equations of functionsEquation of a straight line: y=mx+c
Equation of a parabola: y=ax^2 +bx+c
Circle, centre (a, b), radius r:
(x−a)^2 +(y−b)^2 =r^2
Equation of an ellipse, centre at origin, semi-axesa and b:x^2
a^2+y^2
b^2= 1Equation of a hyperbola:x^2
a^2−y^2
b^2= 1Equation of a rectangular hyperbola: xy=c^2Irregular areasTrapezoidal ruleArea≈(
width of
interval)[
1
2(
first+last
ordinates)+(
sum of remaining
ordinates)]Mid-ordinate ruleArea≈(
width of
interval)(
sum of
mid-ordinates)Simpson’s ruleArea≈1
3(
width of
interval)[(
first+last
ordinate)+ 4(
sum of even
ordinates)+ 2(
sum of remaining
odd ordinates)]Vector Geometry
Ifa=a 1 i+a 2 j+a 3 kandb=b 1 i+b 2 j+b 3 ka·b=a 1 b 1 +a 2 b 2 +a 3 b 3|a|=√
a^21 +a^22 +a^23 cosθ=a·b
|a||b|a×b=∣
∣
∣
∣
∣ijk
a 1 a 2 a 3
b 1 b 2 b 3∣
∣
∣
∣
∣|a×b|=√
[(a·a)(b·b)−(a·b)^2 ]Complex Numbers
z=a+jb=r(cosθ+jsinθ)=r∠θ=rejθ where
j^2 =− 1Modulusr=|z|=√
(a^2 +b^2 )Argumentθ=argz=tan−^1b
a
Addition:(a+jb)+(c+jd)=(a+c)+j(b+d)
Subtraction:(a+jb)−(c+jd)=(a−c)+j(b−d)