Ess-For-H8152.tex 19/7/2006 18: 2 Page 709
ESSENTIAL FORMULAE 709Complex equations:Ifm+jn=p+jqthenm=p
andn=qMultiplication:z 1 z 2 =r 1 r 2 ∠(θ 1 +θ 2 )Division:z 1
z 2=r 1
r 2∠(θ 1 −θ 2 )De Moivre’s theorem:
[r∠θ]n=rn∠nθ=rn(cosnθ+jsinnθ)=rejθMatrices and Determinants
Matrices:IfA=(
ab
cd)
and B=(
ef
gh)
thenA+B=(
a+eb+f
c+gd+h)A−B=(
a−eb−f
c−gd−h)A×B=(
ae+bg af+bh
ce+dg cf+dh)A−^1 =1
ad−bc(
d −b
−ca)If A=(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3)then A−^1 =BT
|A|whereBT=transpose of cofactors of matrix ADeterminants:
∣
∣
∣
∣ab
cd∣
∣
∣
∣=ad−bc∣
∣
∣
∣
∣a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3∣
∣
∣
∣
∣=a 1∣
∣
∣
∣b 2 c 2
b 3 c 3∣
∣
∣
∣−b^1∣
∣
∣
∣a 2 c 2
a 3 c 3∣
∣
∣
∣+c 1∣
∣
∣
∣a 2 b 2
a 3 b 3∣
∣
∣
∣Differential Calculus
Standard derivativesyorf(x)dy
dxorf′(x)axn anxn−^1
sinax acosax
cosax −asinax
tanax asec^2 ax
secax asecaxtanax
cosecax −acosecaxcotax
cotax −acosec^2 ax
eax aeaxlnax1
x
sinhax acoshaxcoshax asinhaxtanhax asech^2 ax
sechax −asechaxtanhax
cosechax −acosechaxcothaxcothax −acosech^2 axsin−^1x
a1
√
a^2 −x^2sin−^1 f(x)f′(x)
√
1 −[f(x)]^2cos−^1x
a− 1
√
a^2 −x^2cos−^1 f(x)−f′(x)
√
1 −[f(x)]^2tan−^1x
aa
a^2 +x^2tan−^1 f(x)f′(x)
1 +[f(x)]^2sec−^1x
aa
x√
x^2 −a^2sec−^1 f(x)f′(x)
f(x)√
[f(x)]^2 − 1cosec−^1x
a−ax√
x^2 −a^2