Ess-For-H8152.tex 19/7/2006 18: 2 Page 710
710 ESSENTIAL FORMULAEyorf(x)dy
dxorf′(x)cosec−^1 f(x)−f′(x)f(x)√
[f(x)]^2 − 1cot−^1x
a−a
a^2 +x^2cot−^1 f(x)−f′(x)
1 +[f(x)]^2sinh−^1x
a1
√
x^2 +a^2sinh−^1 f(x)f′(x)
√
[f(x)]^2 + 1cosh−^1x
a1
√
x^2 −a^2cosh−^1 f(x)f′(x)
√
[f(x)]^2 − 1tanh−^1x
aa
a^2 −x^2tanh−^1 f(x)f′(x)
1 −[f(x)]^2sech−^1x
a−a
x√
a^2 −x^2sech−^1 f(x)−f′(x)
f(x)√
1 −[f(x)]^2cosech−^1x
a−ax√
x^2 +a^2cosech−^1 f(x)−f′(x)f(x)√
[f(x)]^2 + 1coth−^1x
aa
a^2 −x^2coth−^1 f(x)f′(x)
1 −[f(x)]^2Product rule:Wheny=uvanduandvare functions ofxthen:dy
dx=udv
dx+vdu
dxQuotient rule:Wheny=u
vanduandvare functions ofxthen:dy
dx=vdu
dx−udv
dx
v^2Function of a function:Ifuis a function ofxthen:
dy
dx=dy
du×du
dxParametric differentiationIfxandyare both functions ofθ, then:dy
dx=dy
dθ
dx
dθandd^2 y
dx^2=d
dθ(
dy
dx)dx
dθImplicit function:d
dx[f(y)]=d
dy[f(y)]×dy
dxMaximum and minimum values:Ify=f(x) thendy
dx= 0 for stationary points.Let a solution ofdy
dx=0bex=a; if the value ofd^2 y
dx^2whenx=ais:positive, the point is aminimum,
negative, the point is amaximum.Velocity and accelerationIf distancex=f(t), thenvelocity v=f′(t)ordx
dtandacceleration a=f′′(t)ord^2 x
dt^2