Higher Engineering Mathematics

(Greg DeLong) #1

Ess-For-H8152.tex 19/7/2006 18: 2 Page 709


ESSENTIAL FORMULAE 709

Complex equations:Ifm+jn=p+jqthenm=p
andn=q

Multiplication:z 1 z 2 =r 1 r 2 ∠(θ 1 +θ 2 )

Division:

z 1
z 2

=

r 1
r 2

∠(θ 1 −θ 2 )

De Moivre’s theorem:
[r∠θ]n=rn∠nθ=rn(cosnθ+jsinnθ)=rejθ

Matrices and Determinants


Matrices:

IfA=

(
ab
cd

)
and B=

(
ef
gh

)
then

A+B=

(
a+eb+f
c+gd+h

)

A−B=

(
a−eb−f
c−gd−h

)

A×B=

(
ae+bg af+bh
ce+dg cf+dh

)

A−^1 =

1
ad−bc

(
d −b
−ca

)

If A=

(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3

)

then A−^1 =

BT
|A|

where

BT=transpose of cofactors of matrix A

Determinants:




ab
cd




∣=ad−bc






a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3






=a 1





b 2 c 2
b 3 c 3




∣−b^1





a 2 c 2
a 3 c 3





+c 1





a 2 b 2
a 3 b 3





Differential Calculus


Standard derivatives

yorf(x)

dy
dx

orf′(x)

axn anxn−^1
sinax acosax
cosax −asinax
tanax asec^2 ax
secax asecaxtanax
cosecax −acosecaxcotax
cotax −acosec^2 ax
eax aeax

lnax

1
x
sinhax acoshax

coshax asinhax

tanhax asech^2 ax
sechax −asechaxtanhax
cosechax −acosechaxcothax

cothax −acosech^2 ax

sin−^1

x
a

1

a^2 −x^2

sin−^1 f(x)

f′(x)

1 −[f(x)]^2

cos−^1

x
a

− 1

a^2 −x^2

cos−^1 f(x)

−f′(x)

1 −[f(x)]^2

tan−^1

x
a

a
a^2 +x^2

tan−^1 f(x)

f′(x)
1 +[f(x)]^2

sec−^1

x
a

a
x


x^2 −a^2

sec−^1 f(x)

f′(x)
f(x)


[f(x)]^2 − 1

cosec−^1

x
a

−a

x


x^2 −a^2
Free download pdf