Ess-For-H8152.tex 19/7/2006 18: 2 Page 709
ESSENTIAL FORMULAE 709
Complex equations:Ifm+jn=p+jqthenm=p
andn=q
Multiplication:z 1 z 2 =r 1 r 2 ∠(θ 1 +θ 2 )
Division:
z 1
z 2
=
r 1
r 2
∠(θ 1 −θ 2 )
De Moivre’s theorem:
[r∠θ]n=rn∠nθ=rn(cosnθ+jsinnθ)=rejθ
Matrices and Determinants
Matrices:
IfA=
(
ab
cd
)
and B=
(
ef
gh
)
then
A+B=
(
a+eb+f
c+gd+h
)
A−B=
(
a−eb−f
c−gd−h
)
A×B=
(
ae+bg af+bh
ce+dg cf+dh
)
A−^1 =
1
ad−bc
(
d −b
−ca
)
If A=
(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3
)
then A−^1 =
BT
|A|
where
BT=transpose of cofactors of matrix A
Determinants:
∣
∣
∣
∣
ab
cd
∣
∣
∣
∣=ad−bc
∣
∣
∣
∣
∣
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3
∣
∣
∣
∣
∣
=a 1
∣
∣
∣
∣
b 2 c 2
b 3 c 3
∣
∣
∣
∣−b^1
∣
∣
∣
∣
a 2 c 2
a 3 c 3
∣
∣
∣
∣
+c 1
∣
∣
∣
∣
a 2 b 2
a 3 b 3
∣
∣
∣
∣
Differential Calculus
Standard derivatives
yorf(x)
dy
dx
orf′(x)
axn anxn−^1
sinax acosax
cosax −asinax
tanax asec^2 ax
secax asecaxtanax
cosecax −acosecaxcotax
cotax −acosec^2 ax
eax aeax
lnax
1
x
sinhax acoshax
coshax asinhax
tanhax asech^2 ax
sechax −asechaxtanhax
cosechax −acosechaxcothax
cothax −acosech^2 ax
sin−^1
x
a
1
√
a^2 −x^2
sin−^1 f(x)
f′(x)
√
1 −[f(x)]^2
cos−^1
x
a
− 1
√
a^2 −x^2
cos−^1 f(x)
−f′(x)
√
1 −[f(x)]^2
tan−^1
x
a
a
a^2 +x^2
tan−^1 f(x)
f′(x)
1 +[f(x)]^2
sec−^1
x
a
a
x
√
x^2 −a^2
sec−^1 f(x)
f′(x)
f(x)
√
[f(x)]^2 − 1
cosec−^1
x
a
−a
x
√
x^2 −a^2