Higher Engineering Mathematics

(Greg DeLong) #1
MACLAURIN’S SERIES 69

A

fiv(x)=


− 6
(1+x)^4

fiv(0)=

− 6
(1+0)^4

=− 6

fv(x)=

24
(1+x)^5

fv(0)=

24
(1+0)^5

= 24

Substituting these values into equation (5) gives:


f(x)=ln (1+x)= 0 +x(1)+

x^2
2!

(−1)

+

x^3
3!

(2)+

x^4
4!

(−6)+

x^5
5!

(24)

i.e.ln( 1 +x)=x−


x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

Problem 5. Expand ln (1−x) to five terms.

Replacingxby−xin the series for ln (1+x)in
Problem 4 gives:


ln (1−x)=(−x)−


(−x)^2
2

+

(−x)^3
3


(−x)^4
4

+

(−x)^5
5

−···

i.e.ln(1−x)=−x−


x^2
2


x^3
3


x^4
4


x^5
5

−···

Problem 6. Determine the power series for

ln

(
1 +x
1 −x

)
.

ln


(
1 +x
1 −x

)
=ln (1+x)−ln (1−x) by the laws of

logarithms, and from Problems 4 and 5,


ln


(
1 +x
1 −x

)
=

(

x−

x^2
2

+

x^3
3


x^4
4

+

x^5
5

−···

)


(

−x−

x^2
2


x^3
3


x^4
4


x^5
5

−···

)

= 2 x+

2
3

x^3 +

2
5

x^5 +···

i.e.ln


(
1 +x
1 −x

)
= 2

(
x+

x^3
3

+

x^5
5

+ ···

)

Problem 7. Use Maclaurin’s series to find the
expansion of (2+x)^4.

f(x)=(2+x)^4 f(0)= 24 = 16

f′(x)=4(2+x)^3 f′(0)=4(2)^3 = 32

f′′(x)=12(2+x)^2 f′′(0)=12(2)^2 = 48

f′′′(x)=24(2+x)^1 f′′′(0)=24(2)= 48

fiv(x)= 24 fiv(0)= 24

Substituting in equation (5) gives:

( 2 +x)^4

=f(0)+xf′(0)+

x^2
2!

f′′(0)+

x^3
3!

f′′′(0)+

x^4
4!

fiv(0)

= 16 +(x)(32)+

x^2
2!

(48)+

x^3
3!

(48)+

x^4
4!

(24)

= 16 + 32 x+ 24 x^2 + 8 x^3 +x^4

(This expression could have been obtained by apply-
ing the binomial theorem.)

Problem 8. Expand e

x

(^2) as far as the term inx^4.
f(x)=e
x
(^2) f(0)=e^0 = 1
f′(x)=
1
2
e
x
(^2) f′(0)=
1
2
e^0 =
1
2
f′′(x)=
1
4
e
x
(^2) f′′(0)=
1
4
e^0 =
1
4
f′′′(x)=
1
8
e
x
(^2) f′′′(0)=
1
8
e^0 =
1
8
fiv(x)=
1
16
e
x
(^2) fiv(0)=
1
16
e^0 =
1
16
Substituting in equation (5) gives:
e
x
(^2) =f(0)+xf′(0)+x
2
2!
f′′(0)



  • x^3
    3!
    f′′′(0)+
    x^4
    4!
    fiv(0)+···
    = 1 +(x)
    (
    1
    2
    )


  • x^2
    2!
    (
    1
    4
    )




  • x^3
    3!
    (
    1
    8
    )




  • x^4
    4!
    (
    1
    16
    )
    +···
    i.e. e
    x
    (^2) = 1 +
    1
    2
    x+
    1
    8
    x^2 +
    1
    48
    x^3 +
    1
    384
    x^4 +···



Free download pdf