=
[
−a^2 ̄h^2
2 m+
1
2
mω^2]
∞∫
−∞x^2 e−ax
2
dx
∞∫−∞e−ax^2 dx+
[
̄h^2 a
2 m]
∫∞
−∞e−ax2
dx=√
π
a=
√
πa−^1 /^2−
∫∞
−∞x^2 e−ax2
dx=√
π(
−
1
2
)
a−^3 /^2∫∞
−∞x^2 e−ax2
dx=1
2
√
π
a^3=
1
2 a√
π
aE′=
[
−a ̄h^2
4 m+
1
4 amω^2]
+
̄h^2 a
2 m=
1
4 amω^2 +̄h^2
4 ma∂E′
∂a=
−mω^2
4 a^2+
̄h^2
4 m= 0
4 a^2 ̄h^2 = 4m^2 ω^2a=mω
̄hψ=e−mω2 ̄hx 2E′=
mω^2
4̄h
mω+
̄h^2
4 mmω
̄h=
1
4
̄hω+1
4
̄hωOK.
25.7 Derivations and Computations
25.7.1 Calculation of the ground state energy shift
To calculate the first order correction to the He ground state energy, we gotta do this integral.
∆Egs=〈u 0 |V|u 0 〉=∫
d^3 r 1 d^3 r 2 |φ 100 (~r 1 )|^2 |φ 100 (~r 2 )|^2e^2
|~r 1 −~r 2 |First, plug in the Hydrogen ground state wave function (twice).
∆Egs=[
1
4 π4
(
Z
a 0) 3 ]^2
e^2∫∞
0r^21 dr 1 e−^2 Zr^1 /a^0∫∞
0r 22 dr 1 e−^2 Zr^2 /a^0∫
dΩ 1∫
dΩ 21
|~r 1 −~r 2 |