8.9 Primal and Dual Programs in the Case of Less-Than Inequalities 513Table 8.2 (continued)
Primal program Dual program
the exponentsakijare real numbers, and
the coefficientsckjare positive numbers.
∑N^0
j= 1λ 0 j= 1∑m
k= 0∑Nk
j= 1akijλkj= 0 , i= 1 , 2 ,... , nthe factorsckjare positive, and the
coefficientsakijare real numbers.Terminologyg 0 =f=primal function
x 1 , x 2 ,... , xn=primal variables
gk≤1 are primal constraints(k= 1 , 2 ,... , m)xi> 0 , i= 1 , 2 ,... , npositive restrictions.
n=number of primal variables
m=number of primal constriants
N=N 0 +N 1 + · · · +Nm=total number
of terms in the posynomials
N−n− 1 =degree of difficulty of the
problemν=dual function
λ 01 , λ 02 ,... , λmN m=dual variables
∑N^0
j= 1λ 0 j= 1 is the normality constraint∑m
k= 0N∑k
j= 1akijλkj= 0 , i= 1 , 2 ,... , nare theorthogonality constraintsλkj≥ 0 , j= 1 , 2 ,... , Nk;
k= 0 , 1 , 2 ,... , mare nonnegativity restrictions
N=N 0 +N 1 + · · · +Nm
=number of dual variables
n+1 number of dual constraintsv(λ)=∏^1
k= 0∏Nkj= 1(
ckj
λkj∑Nkl= 1λkl)λkj=
N∏ 0 = 3
j= 1
c^0 j
λ 0 jN∑ 0 = 3
l= 1λ 0 l
λ 0 jN
∏^1 =^1j= 1(
c 1 j
λ 1 jN∑ 1 = 1
l= 1λ 1 l)λ 1 j=
[
c 01
λ 01(λ 01 +λ 02 +λ 03 )]λ 01 [
c 02
λ 02(λ 01 +λ 02 +λ 03 )]λ 02·
[
c 03
λ 03(λ 01 +λ 02 +λ 03 )]λ 03 (
c 11
λ 11λ 11)λ 11
(E 1 )subject to the constraints
λ 01 +λ 02 +λ 03 = 1a 011 λ 01 +a 012 λ 02 +a 013 λ 03 +a 111 λ 11 = 0