Begin2.DVI

(Ben Green) #1




∫∞

0

sinhpx
sinhqxdx=

π
2 qtan(

πp
2 q), |p|< q





∫∞

0

coshax−coshbx
sinhπx dx= ln

∣∣
∣∣

cos 2 b
cosa 2

∣∣
∣∣
∣, −π < b < a < π





∫∞

0

sinhpx
sinhqxcosmx dx=

π
2 q

sinπpq
cosπpq + coshπmq , q >^0 , p

(^2) < q 2
147.
∫∞
0
sinhpx
coshqxsinmx dx=
π
q
sinpπ 2 qsinhmπ 2 q
cospπq + coshmπq
148.
∫∞
0
coshpx
coshqxcosmx dx=
π
q
cospπ 2 qcoshmπ 2 q
cospπq + coshmπq
Miscellaneous Integrals
149.
∫x
0
ξλ−^1 [1−ξμ]νdξ=x
λ
λ F(−ν,
λ
μ;
λ
μ+ 1;x
μ) See hypergeometric function
150.
∫π
0
cos(nφ−xsinφ)dφ=π Jn(x)
151.
∫a
−a
(a+x)m−^1 (a−x)n−^1 dx= (2a)m+n−^1 Γ(Γ(mm)Γ(+nn))



  1. Iff′(x)is continuous and


∫∞
1

f(x)−f(∞)
x dxconverges, then
∫∞
0

f(ax)−f(bx)
x dx= [f(0)−f(∞)] ln

b
a


  1. Iff(x) =f(−x)so thatf(x)is an even function, then
    ∫∞


0

f

(
x−x^1

)
dx=

∫∞

0

f(x)dx


  1. Elliptic integral of the first kind
    ∫θ


0

√ dθ
1 −k^2 sin^2 θ

=F(θ, k), 0 < k < 1


  1. Elliptic integral of the second kind
    ∫θ


0


1 −k^2 sin^2 θ dθ=E(θ, k)


  1. Elliptic integral of the third kind
    ∫θ


0


(1 +nsin^2 θ)


1 −k^2 sin^2 θ

= Π(θ, k, n)

Appendix C
Free download pdf