Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

Solutions


This gives
x^2222222   222,cxc y k x cxc y k xc y 2 2
yielding
24 kxc y k cx  ^222
or
xc y ^222 kcx^2 k.
6TXDULQJDJDLQJLYHV
xc y ^22 kcx 4222 2,cx^4 k 2
DQGH[SDQGLQJJLYHV
xcxcy^222  22,kcx 4222 cx^4 k 2
yielding
xyc^222 ©¹ ̈ ̧§·1. ^4 kck 2224
Because k! 2 c, the quantities 1and^4 kck 2224 c^2 DUHERWKSRVLWLYHQXPEHUV'LYLGLQJWKURXJKE\k 42 c^2
gives

(^222222)
22


1,


44 4


1


x y
k c k c
kc

§·§·  


̈ ̧ ̈ ̧ ̈ ̧©¹


̈ ̧©¹


which is indeed an equation of the form abx^222  y^21 ͼ௘ZLWK

(^222)
2 2
2
(^44) and 4.
1
k c k
abcc
k


 · ̧


 ¹^

Free download pdf