LLoadx(l – x)wL^2x(l – 2x^2 + x^3 )- xwL
ShearMomentElastic curve(a)wxLR=RRwL
2 R=wL
2wL^2
8
wL^3
24 EI
5 wL^4
384 EI
wL^4
24 EIL
2
1
21
21
2x<^12cLLLoada+(2c + b)(x′ < a) (x′′ < c)ShearMoment
(b)b
wacR=R 2R 1wb
2 L
R 2 =wb 2 L(2c + b)R 1
wR^12 wR 1 – w(x – a)w 2x
(a < x <a+b)(xa)
2x′ x′′R 1 x′ R^1
x R(^1a +
R 2 x′′R 1 a R 2 cL
Loadk(1 – k)PLk(1 – k)(2 – k)ShearMomentElastic curve
(c)PR 2R 1R 1 = (l – k)PR 2 =PkPL^2
6 EI1
23
2k(1 – k^2 )1 – k^2
3PL^2
6 EIPL k (^2) (1 – k) 2
3
3 EI = k
dmax 1 – k^2
3
PL^3
3 EI
PLkx′′(1 – k (^2) – x′′ (^2) )
3
6 EI
PL(1 – k)x′(2k – k (^2) – x′ (^2) )
3
6 EI
k <
(l – k)L
x′L
(x′ < k)
R 1 x′L R 2 x′′L
L
x′′L
(x′′ < (1 – k))
kL
32
FIGURE 2.3 Elastic-curve equations for prismatic beams: (a) Shears, moments, and deflections for full uniform load on a simply sup-
ported prismatic beam. (b) Shears and moments for uniform load over part of a simply supported prismatic beam. (c) Shears, moments,
and deflections for a concentrated load at any point of a simply supported prismatic beam.