CIVIL ENGINEERING FORMULAS

(Frankie) #1
L

Load

x(l – x)wL^2

x(l – 2x^2 + x^3 )


  • xwL


Shear

Moment

Elastic curve

(a)

w

xL

R=

R

R

wL
2 R=

wL
2

wL^2
8
wL^3
24 EI
5 wL^4
384 EI
wL^4
24 EI

L
2
1
2

1
2

1
2

x<^12

cL

L

Load

a+

(2c + b)

(x′ < a) (x′′ < c)

Shear

Moment
(b)

b
w

ac

R=

R 2

R 1

wb
2 L
R 2 =wb 2 L(2c + b)

R 1
w

R^12 w

R 1 – w(x – a)

w 2

x
(a < x <a+b)

(x





a)
2





x′ x′′

R 1 x′ R^1
x R(^1

a +
R 2 x′′

R 1 a R 2 c

L
Load

k(1 – k)PL

k(1 – k)(2 – k)

Shear

Moment

Elastic curve
(c)

P

R 2

R 1

R 1 = (l – k)PR 2 =Pk

PL^2
6 EI

1
2

3
2

k(1 – k^2 )

1 – k^2
3

PL^2
6 EI

PL k (^2) (1 – k) 2
3
3 EI = k
dmax 1 – k^2
3
PL^3
3 EI
PLkx′′(1 – k (^2) – x′′ (^2) )
3
6 EI
PL(1 – k)x′(2k – k (^2) – x′ (^2) )
3
6 EI
k <
(l – k)L
x′L
(x′ < k)
R 1 x′L R 2 x′′L
L
x′′L
(x′′ < (1 – k))
kL
32
FIGURE 2.3 Elastic-curve equations for prismatic beams: (a) Shears, moments, and deflections for full uniform load on a simply sup-
ported prismatic beam. (b) Shears and moments for uniform load over part of a simply supported prismatic beam. (c) Shears, moments,
and deflections for a concentrated load at any point of a simply supported prismatic beam.

Free download pdf