L
Load
x(l – x)wL^2
x(l – 2x^2 + x^3 )
- xwL
Shear
Moment
Elastic curve
(a)
w
xL
R=
R
R
wL
2 R=
wL
2
wL^2
8
wL^3
24 EI
5 wL^4
384 EI
wL^4
24 EI
L
2
1
2
1
2
1
2
x<^12
cL
L
Load
a+
(2c + b)
(x′ < a) (x′′ < c)
Shear
Moment
(b)
b
w
ac
R=
R 2
R 1
wb
2 L
R 2 =wb 2 L(2c + b)
R 1
w
R^12 w
R 1 – w(x – a)
w 2
x
(a < x <a+b)
(x
a)
2
x′ x′′
R 1 x′ R^1
x R(^1
a +
R 2 x′′
R 1 a R 2 c
L
Load
k(1 – k)PL
k(1 – k)(2 – k)
Shear
Moment
Elastic curve
(c)
P
R 2
R 1
R 1 = (l – k)PR 2 =Pk
PL^2
6 EI
1
2
3
2
k(1 – k^2 )
1 – k^2
3
PL^2
6 EI
PL k (^2) (1 – k) 2
3
3 EI = k
dmax 1 – k^2
3
PL^3
3 EI
PLkx′′(1 – k (^2) – x′′ (^2) )
3
6 EI
PL(1 – k)x′(2k – k (^2) – x′ (^2) )
3
6 EI
k <
(l – k)L
x′L
(x′ < k)
R 1 x′L R 2 x′′L
L
x′′L
(x′′ < (1 – k))
kL
32
FIGURE 2.3 Elastic-curve equations for prismatic beams: (a) Shears, moments, and deflections for full uniform load on a simply sup-
ported prismatic beam. (b) Shears and moments for uniform load over part of a simply supported prismatic beam. (c) Shears, moments,
and deflections for a concentrated load at any point of a simply supported prismatic beam.