2.3 Solutions 125
Integration of (1) yields
∫
∂
∂x
(ψ∗ψ)dτ+
∫
ψ∗
∂ψ
∂x
dτ+
∫
ψ
dψ∗
dx
dτ (2)
The integral on the LHS vanishes becauseψ∗ψvanishes for large values of
|x|if the particle is confined to some finite region. Thus
∫
∂
∂x
(ψ∗ψ)dxdydz=
∫
|ψ∗ψ|∞−∞dydz= 0
Therefore (2) becomes
∫
ψ∗
(
∂ψ
∂x
)
dτ=−
∫
ψ
(
∂ψ∗
∂x
)
dτ (3)
Generalizing to all the three coordinates
(ψ,∇ψ)=−(∇ψ,ψ)(4)
Hence
(ψ,i∇ψ)=(i∇ψ,ψ)(5)
where we have used,i∇ψ,ψ=−
∫
i∇ψ∗ψdτ.
This completes the proof that the momentum operator is hermitian.
2.73 Using the standard method explained in Chap. 1, define the eigen values
λ 1 =3 andλ 2 =−1forthematrixPand the eigen vectors√^12
(
1
1
)
and
√^1
2
(
1
− 1
)
. For the matrix Q, the eigen values areλ 1 =5 andλ 2 =1, the eigen
vectors being√^12
(
1
1
)
and√^12
(
1
− 1
)
. Thus the eigen vectors for the commutat-
ing matrices are identical.
2.74 (a)A=αx+iβp
A†=ax†−iβp†
(b)[A,x]=α[x,x]+iβ[p,x]
= 0 +iβ(−i)=β
[A,A]=AA−AA= 0
[A,p]=α[x,p]+iβ[p,p]
=iα+ 0 =iα
2.75 (a) AsAsatisfies a quadratic equation it can be represented by a 2×2 matrix.
Its eigen values are the roots of the quadratic equation
λ^2 − 4 λ+ 3 = 0 ,λ 1 = 1 ,λ 2 = 3
(b)Ais represented by the matrix
A=
(
10
03
)
The eigen value equation is
(
10
03
)(
a
b
)
=λ
(
a
b