1000 Solved Problems in Modern Physics

(Grace) #1

72 1 Mathematical Physics


(b) Differentiate with respect tox
∂T
∂x

=s(1− 2 sx+s^2 )−

(^32)


=


(1− 2 sx+s^2 )−^1 plsl+^1

=


pl′sl

Multiply by (1− 2 sx+s^2 )

sl+^1 pl=


(sl− 2 xsl+^1 +sl+^2 )p′l

Equate coefficients ofsl+^1
pl=p′l+ 1 − 2 xpl′+pl′− 1

orpl(x)+ 2 xpl′(x)=p′l+ 1 +p′l− 1

1.82

e−

xs
1 −s
1 −s

=

∑∞

n= 0

Ln(x)sn
n!
Putx= 0

∑∞

n= 0

Ln(0)

sn
n!

=

1

1 −s

= 1 +s+s^2 +···sn+···

=

∑∞

n= 0

sn

ThereforeLn(0)=n!

1.3.11 ComplexVariables.................................


1.83 (a) Since the pole atz=2 is not interior to|z|=1, the integral equals zero
(b) Since the pole atz=2 is interior to|z+i|=3, the integral equals 2πi.


1.84 Method 1



c

4 z^2 − 3 z+ 1
(z−1)^3

dz=


c

4(z−1)^2 +5(z−1)+ 2
(z−1)^3

dz

= 4


c

dz
z− 1

+ 5


c

dz
(z−1)^2

+ 2


c

dz
(z−1)^3
=4(2πi)+5(0)+6(0)= 8 πi
where we have used the result
Free download pdf