72 1 Mathematical Physics
(b) Differentiate with respect tox
∂T
∂x
=s(1− 2 sx+s^2 )−
(^32)
=
∑
(1− 2 sx+s^2 )−^1 plsl+^1
=
∑
pl′sl
Multiply by (1− 2 sx+s^2 )
∑
sl+^1 pl=
∑
(sl− 2 xsl+^1 +sl+^2 )p′l
Equate coefficients ofsl+^1
pl=p′l+ 1 − 2 xpl′+pl′− 1
orpl(x)+ 2 xpl′(x)=p′l+ 1 +p′l− 1
1.82
e−
xs
1 −s
1 −s
=
∑∞
n= 0
Ln(x)sn
n!
Putx= 0
∑∞
n= 0
Ln(0)
sn
n!
=
1
1 −s
= 1 +s+s^2 +···sn+···
=
∑∞
n= 0
sn
ThereforeLn(0)=n!
1.3.11 ComplexVariables.................................
1.83 (a) Since the pole atz=2 is not interior to|z|=1, the integral equals zero
(b) Since the pole atz=2 is interior to|z+i|=3, the integral equals 2πi.
1.84 Method 1
∮
c
4 z^2 − 3 z+ 1
(z−1)^3
dz=
∮
c
4(z−1)^2 +5(z−1)+ 2
(z−1)^3
dz
= 4
∮
c
dz
z− 1
+ 5
∮
c
dz
(z−1)^2
+ 2
∮
c
dz
(z−1)^3
=4(2πi)+5(0)+6(0)= 8 πi
where we have used the result