70 1 Mathematical Physics
=
√
2
πx
[
1 −
x^2
2!
+
x^4
4!
−···
]
=
√
2
πx
cosx
1.79 The normalization of Legendre polynomials can be obtained byl–foldinte-
gration by parts for the conventional form
Pl(x)=
1
2 ll!
dl
dxl
(x^2 −1)l (Rodrigues’s formula)
∫+ 1
− 1
[Pl(x)]^2 dx=
(
1
2 ll!
) 2 ∫+ 1
− 1
[
dl(x^2 −1)l
dxl
][
dl(x^2 −1)l
dxl
]
dx
=(−1)l(
1
2 ll!
)^2
∫+ 1
− 1
[
d^2 l(x^2 −1)
dx^2 l
]
(x^2 −1)ldx
=(−1)l
(
(2l)!
2 ll!
) 2 ∫+ 1
− 1
(x^2 −1)ldx=
2
2 l+ 1
Putl=nto get the desired result.
The orthogonality can be proved as follows. Legendre’s differential equation
d
dx
[
(1−x^2 )
dPn(x)
dx
]
+n(n+1)Pn(x)=0(1)
can be recast as
[(1−x^2 )Pn′]′=−n(n+1)Pn(x)(2)
[(1−x^2 )Pm′]′=−m(m+1)Pm(x)(3)
Multiply (2) byPmand (3) byPnand subtract the resulting expressions.
Pm[(1−x^2 )Pn′]′−Pn[(1−x^2 )Pm′]′=[m(m+1)−n(n+1)]PmPn (4)
Now, LHS of (4) can be written as
Pm[(1−x^2 )Pn′]′−Pn[(1−x^2 )Pm′]′
=Pm[(1−x^2 )Pn′]′+Pm′[(1−x^2 )Pn′]−Pn[(1−x^2 )Pm′]−Pn[(1−x^2 )Pm′]′
(4) can be integrated
d
dx
[(1−x^2 )(PmPn′−PnPm′)=[m(m+1)−n(n+1)]PmPn
(1−x^2 )
(
PmPn′−PnPm′
)
|^1 − 1 =[m(m+1)−n(n+1)]
∫ 1
− 1
PmPndx
Since (1−x^2 ) vanishes atx =±1, the LHS is zero and the orthogonality
follows.
∫ 1
− 1
Pm(x)Pn(x)dx=0;m
=n