Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Differentiation of implicit functions 323


i.e. 2 x+ 2 y

dy
dx

= 0

Hence

dy
dx

=−

2 x
2 y

=−

x
y

Sincex^2 +y^2 =25, whenx=4,y=



( 25 − 42 )=± 3

Thus whenx=4andy=±3,
dy
dx


=−
4
± 3


4
3

x^2 +y^2 =25 is the equation of a circle, centre at the
origin and radius 5, as shown in Fig. 30.1. Atx=4, the
two gradients are shown.


y
5

3

(^045) x
23
25
25
Gradient
3524
Gradient
54
3
x^21 y^2525
Figure 30.1
Above,x^2 +y^2 =25 was differentiated implicitly;
actually, the equation could be transposed to
y=

( 25 −x^2 )and differentiated using the function of
a function rule. This gives
dy
dx


1
2
( 25 −x^2 )
− 1
(^2) (− 2 x)=−
x

( 25 −x^2 )
and whenx=4,
dy
dx
=−
4

( 25 − 42 )

4
3
as obtained
above.
Problem 8.
(a) Find
dy
dx
in terms ofxandygiven
4 x^2 + 2 xy^3 − 5 y^2 =0.
(b) Evaluate
dy
dx
whenx=1andy=2.
(a) Differentiating each term in turn with respect tox
gives:
d
dx
( 4 x^2 )+
d
dx
( 2 xy^3 )−
d
dx
( 5 y^2 )=
d
dx
( 0 )
i.e. 8x+
[
( 2 x)
(
3 y^2
dy
dx
)
+(y^3 )( 2 )
]
− 10 y
dy
dx
= 0
i.e. 8x+ 6 xy^2
dy
dx




  • 2 y^3 − 10 y
    dy
    dx
    = 0
    Rearranging gives:
    8 x+ 2 y^3 =( 10 y− 6 xy^2 )
    dy
    dx
    and
    dy
    dx


    8 x+ 2 y^3
    10 y− 6 xy^2


    4 x+y^3
    y(5− 3 xy)
    (b) Whenx=1andy=2,
    dy
    dx


    4 ( 1 )+( 2 )^3
    2[5−( 3 )( 1 )( 2 )]


    12
    − 2
    =− 6
    Problem 9. Find the gradients of the tangents
    drawntothecirclex^2 +y^2 − 2 x− 2 y=3atx=2.
    The gradient of the tangent is given by
    dy
    dx
    Differentiatingeach term in turn with respect toxgives:
    d
    dx
    (x^2 )+
    d
    dx
    (y^2 )−
    d
    dx
    ( 2 x)−
    d
    dx
    ( 2 y)=
    d
    dx
    ( 3 )
    i.e. 2 x+ 2 y
    dy
    dx
    − 2 − 2
    dy
    dx
    = 0
    Hence ( 2 y− 2 )
    dy
    dx
    = 2 − 2 x,
    from which
    dy
    dx


    2 − 2 x
    2 y− 2


    1 −x
    y− 1
    The value ofy whenx=2 is determined from the
    original equation.
    Hence( 2 )^2 +y^2 − 2 ( 2 )− 2 y= 3
    i.e. 4 +y^2 − 4 − 2 y= 3
    or y^2 − 2 y− 3 = 0
    Factorizing gives: (y+ 1 )(y− 3 )=0, from which
    y=−1ory=3.
    Whenx=2andy=−1,
    dy
    dx


    1 −x
    y− 1


    1 − 2
    − 1 − 1


    − 1
    − 2


    1
    2



Free download pdf