Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Differentiation of inverse trigonometric and hyperbolic functions 343


Hence


d
dx

[coth−^1 (sinx)]=

cosx
[1−(sinx)^2 ]

=

cosx
cos^2 x

since cos^2 x+sin^2 x= 1

=

1
cosx

=secx

Problem 18. Differentiate
y=(x^2 − 1 )tanh−^1 x.

Using the product rule,


dy
dx

=(x^2 − 1 )

(
1
1 −x^2

)
+(tanh−^1 x)( 2 x)

=

−( 1 −x^2 )
( 1 −x^2 )

+ 2 xtanh−^1 x= 2 xtanh−^1 x− 1

Problem 19. Determine


dx

(x^2 + 4 )

.

Since


d
dx

(
sinh−^1

x
a

)
=

1

(x^2 +a^2 )

then



dx

(x^2 +a^2 )

=sinh−^1

x
a

+c

Hence



1

(x^2 + 4 )

dx =


1

(x^2 + 22 )

dx

=sinh−^1

x
2

+c

Problem 20. Determine


4

(x^2 − 3 )

dx.

Since


d
dx

(
cosh−^1

x
a

)
=

1

(x^2 −a^2 )

then



1

(x^2 −a^2 )

dx=cosh−^1

x
a

+c

Hence



4

(x^2 − 3 )

dx= 4


1

[x^2 −(


3 )^2 ]

dx

=4cosh−^1

x

3

+c

Problem 21. Find


2
( 9 − 4 x^2 )

dx.

Since tanh−^1

x
a

=

a
a^2 −x^2

then


a
a^2 −x^2

dx=tanh−^1

x
a

+c

i.e.


1
a^2 −x^2

dx=

1
a

tanh−^1

x
a

+c

Hence


2
( 9 − 4 x^2 )

dx= 2


1
4

( 9
4 −x

2 )dx

=

1
2


1
[(
3
2

) 2
−x^2

]dx

=

1
2

[
1
( 3
2

)tanh−^1

x
( 3
2

)+c

]

i.e.


2
( 9 − 4 x^2 )

dx=

1
3

tanh−^1

2 x
3

+c

Now try the following exercise

Exercise 137 Further problems on
differentiation of inverse hyperbolic
functions

In Problems 1 to 11, differentiate with respect to
the variable.


  1. (a) sinh−^1


x
3

(b) sinh−^14 x
[
(a)

1

(x^2 + 9 )

(b)

4

( 16 x^2 + 1 )

]


  1. (a) 2 cosh−^1


t
3

(b)

1
2

cosh−^12 θ
[
(a)

2

(t^2 − 9 )

(b)

1

( 4 θ^2 − 1 )

]


  1. (a) tanh−^1


2 x
5

(b) 3 tanh−^13 x
[
(a)

10
25 − 4 x^2

(b)

9
( 1 − 9 x^2 )

]


  1. (a) sech−^1


3 x
4

(b)−

1
2

sech−^12 x
[
(a)

− 4
x


( 16 − 9 x^2 )

(b)

1
2 x


( 1 − 4 x^2 )

]
Free download pdf