Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using algebraicsubstitutions 395


Hence


tanθdθ=ln(secθ)+c,

since (cosθ)−^1 =


1
cosθ

=secθ

39.5 Change of limits


When evaluating definite integrals involving substi-
tutions it is sometimes more convenient tochange
the limitsof the integral as shown in Problems 10
and 11.

Problem 10. Evaluate

∫ 3
15 x


( 2 x^2 + 7 )dx,
taking positive values of square roots only.

Letu= 2 x^2 +7, then

du
dx

= 4 xand dx=

du
4 x
It is possible in this case to change the limits of inte-
gration. Thus whenx=3,u= 2 ( 3 )^2 + 7 =25 and when
x=1,u= 2 ( 1 )^2 + 7 =9.

Hence

∫x= 3

x= 1

5 x


( 2 x^2 + 7 )dx=

∫u= 25

u= 9

5 x


u

du
4 x

=
5
4

∫ 25

9


udu

=

5
4

∫ 25

9

u

1

(^2) du
Thus the limitshave been changed, and it is unnecessary
to change the integral back in terms ofx.
Thus
∫x= 3
x= 1
5 x

( 2 x^2 + 7 )dx=
5
4

⎣u
3
2
3 / 2


25
9


5
6
[√
u^3
] 25
9


5
6
[√
253 −

93
]


5
6
( 125 − 27 )= 81
2
3
Problem 11. Evaluate
∫ 2
0
3 x

( 2 x^2 + 1 )
dx,
taking positive values of square roots only.
Letu= 2 x^2 +1then
du
dx
= 4 xand dx=
du
4 x
Hence
∫ 2
0
3 x

( 2 x^2 + 1 )
dx=
∫x= 2
x= 0
3 x

u
du
4 x


3
4
∫x= 2
x= 0
u
− 1
(^2) du
Since u= 2 x^2 +1, when x= 2 ,u=9andwhen
x= 0 ,u=1.
Thus
3
4
∫x= 2
x= 0
u
− 1
(^2) du=^3
4
∫u= 9
u= 1
u
− 1
(^2) du,
i.e. the limits have been changed


3
4



u
1
2
1
2



9
1


3
2
[√
9 −

1
]
= 3 ,
taking positive values of square roots only.
Now try the following exercise
Exercise 154 Further problemson
integration using algebraic substitutions
In Problems 1 to 7, integrate with respect to the
variable.



  1. 2x( 2 x^2 − 3 )^5


[
1
12

( 2 x^2 − 3 )^6 +c

]


  1. 5cos^5 tsint


[

5
6

cos^6 t+c

]


  1. 3sec^23 xtan3x
    [
    1
    2


sec^23 x+cor

1
2

tan^23 x+c

]


  1. 2t



( 3 t^2 − 1 )

[
2
9


( 3 t^2 − 1 )^3 +c

]

5.
lnθ
θ

[
1
2

(lnθ)^2 +c

]
Free download pdf