Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

402 Higher Engineering Mathematics



1
3

cos5xsin2xdx

=

1
3


1
2

[sin( 5 x+ 2 x)−sin( 5 x− 2 x)]dx,
from 7 of Table 40.1

=

1
6


(sin7x−sin3x)dx

=

1
6

(
−cos 7x
7

+

cos 3x
3

)
+c

Problem 11. Evaluate

∫ 1

0

2cos6θcosθdθ,
correct to 4 decimal places.

∫ 1

0

2cos6θcosθdθ

= 2

∫ 1

0

1
2

[cos( 6 θ+θ)+cos( 6 θ−θ)]dθ,
from 8 of Table 40.1

=

∫ 1

0

(cos 7θ+cos 5θ)dθ=

[
sin7θ
7

+

sin5θ
5

] 1

0

=

(
sin7
7

+

sin5
5

)

(
sin0
7

+

sin0
5

)

‘sin7’ means ‘the sine of 7radians’ (≡ 401 ◦ 4 ′)and
sin 5≡ 286 ◦ 29 ′.

Hence

∫ 1

0

2cos6θcosθdθ

=( 0. 09386 +(− 0. 19178 ))−( 0 )
=− 0. 0979 ,correct to 4 decimal places.

Problem 12. Find 3


sin5xsin3xdx.

3


sin5xsin3xdx

= 3



1
2

[cos( 5 x+ 3 x)−cos( 5 x− 3 x)]dx,
from 9 of Table 40.1

=−

3
2


(cos 8x−cos 2x)dx

=−

3
2

(
sin 8
8


sin 2x
2

)
+c or

3
16

(4sin2x−sin 8x)+c

Now try the following exercise

Exercise 157 Further problems on
integration of products of sines and cosines
In Problems 1 to 4, integrate with respect to the
variable.


  1. sin5tcos 2t


[

1
2

(
cos 7t
7

+

cos 3t
3

)
+c

]


  1. 2sin3xsinx


[
sin2x
2


sin4x
4

+c

]


  1. 3cos6xcosx [
    3
    2


(
sin7x
7

+

sin5x
5

)
+c

]

4.

1
2

cos 4θsin2θ
[
1
4

(
cos2θ
2


cos 6θ
6

)
+c

]

In Problems 5 to 8, evaluate the definite integrals.

5.

∫ π
2
0

cos 4xcos 3xdx

[
(a)

3
7

or 0. 4286

]

6.

∫ 1

0

2sin7tcos 3tdt [0.5973]


  1. − 4


∫ π
3
0

sin5θsin2θdθ [0.2474]

8.

∫ 2

1

3cos8tsin3tdt [−0.1999]

40.5 Worked problems on integration


using thesinθsubstitution


Problem 13. Determine


1

(a^2 −x^2 )

dx.

Letx=asinθ,then

dx

=acosθand dx=acosθdθ.

Hence


1

(a^2 −x^2 )

dx

=


1

(a^2 −a^2 sin^2 θ)

acosθdθ

=


acosθdθ

[a^2 ( 1 −sin^2 θ)]
Free download pdf