Integration using trigonometric and hyperbolic substitutions 403
=∫
acosθdθ
√
(a^2 cos^2 θ),sincesin^2 θ+cos^2 θ= 1=∫
acosθdθ
acosθ=∫
dθ=θ+cSincex=asinθ,thensinθ=
x
aandθ=sin−^1x
a.Hence
∫
1
√
(a^2 −x^2 )dx=sin−^1x
a+cProblem 14. Evaluate∫ 301
√
( 9 −x^2 )dx.From Problem 13,
∫ 301
√
( 9 −x^2 )dx=[
sin−^1x
3] 30, sincea= 3=(sin−^11 −sin−^10 )=π
2or 1. 5708Problem 15. Find∫ √
(a^2 −x^2 )dx.Letx=asinθthen
dx
dθ=acosθand dx=acosθdθ.Hence
∫ √
(a^2 −x^2 )dx=∫ √
(a^2 −a^2 sin^2 θ)(acosθdθ)=∫ √
[a^2 ( 1 −sin^2 θ)](acosθdθ)=∫ √
(a^2 cos^2 θ)(acosθdθ)=∫
(acosθ)(acosθdθ)=a^2∫
cos^2 θdθ=a^2∫ (
1 +cos2θ
2)
dθ(since cos 2θ=2cos^2 θ− 1 )=a^2
2(
θ+sin2θ
2)
+c=a^2
2(
θ+2sinθcosθ
2)
+csince from Chapter 17, sin2θ=2sinθcosθ=a^2
2[θ+sinθcosθ]+cSincex=asinθ,thensinθ=x
aandθ=sin−^1x
a
Also, cos^2 θ+sin^2 θ=1, from which,cosθ=√
( 1 −sin^2 θ)=√[
1 −(x
a) 2 ]=√(
a^2 −x^2
a^2)
=√
(a^2 −x^2 )
aThus∫ √
(a^2 −x^2 )dx=a^2
2[θ+sinθcosθ]=a^2
2[
sin−^1x
a+(x
a)√(a (^2) −x (^2) )
a
]
+c
a^2
2
sin−^1
x
a
x
2
√
(a^2 −x^2 )+c
Problem 16. Evaluate
∫ 4
0
√
( 16 −x^2 )dx.
From Problem 15,
∫ 4
0
√
( 16 −x^2 )dx
[
16
2
sin−^1
x
4
x
2
√
( 16 −x^2 )
] 4
0
[
8sin−^11 + 2
√
( 0 )
]
−[8 sin−^10 +0]
=8sin−^11 = 8
(π
2
)
= 4 πor 12. 57
Now try the following exercise
Exercise 158 Further problemson
integration using the sineθsubstitution
- Determine
∫
5
√
( 4 −t^2 )dt.
[
5sin−^1x
2+c]- Determine
∫
3
√
( 9 −x^2 )dx.
[
3sin−^1x
3+c]- Determine
∫ √
( 4 −x^2 )dx.
[
2sin−^1x
2+x
2√
( 4 −x^2 )+c]