Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using trigonometric and hyperbolic substitutions 403


=


acosθdθ

(a^2 cos^2 θ)

,sincesin^2 θ+cos^2 θ= 1

=


acosθdθ
acosθ

=


dθ=θ+c

Sincex=asinθ,thensinθ=


x
a

andθ=sin−^1

x
a

.

Hence



1

(a^2 −x^2 )

dx=sin−^1

x
a

+c

Problem 14. Evaluate

∫ 3

0

1

( 9 −x^2 )

dx.

From Problem 13,


∫ 3

0

1

( 9 −x^2 )

dx

=

[
sin−^1

x
3

] 3

0

, sincea= 3

=(sin−^11 −sin−^10 )=

π
2

or 1. 5708

Problem 15. Find

∫ √
(a^2 −x^2 )dx.

Letx=asinθthen


dx

=acosθand dx=acosθdθ.

Hence


∫ √
(a^2 −x^2 )dx

=

∫ √
(a^2 −a^2 sin^2 θ)(acosθdθ)

=

∫ √
[a^2 ( 1 −sin^2 θ)](acosθdθ)

=

∫ √
(a^2 cos^2 θ)(acosθdθ)

=


(acosθ)(acosθdθ)

=a^2


cos^2 θdθ=a^2

∫ (
1 +cos2θ
2

)

(since cos 2θ=2cos^2 θ− 1 )

=

a^2
2

(
θ+

sin2θ
2

)
+c

=

a^2
2

(
θ+

2sinθcosθ
2

)
+c

since from Chapter 17, sin2θ=2sinθcosθ

=

a^2
2

[θ+sinθcosθ]+c

Sincex=asinθ,thensinθ=

x
a

andθ=sin−^1

x
a
Also, cos^2 θ+sin^2 θ=1, from which,

cosθ=


( 1 −sin^2 θ)=

√[
1 −

(x
a

) 2 ]

=

√(
a^2 −x^2
a^2

)
=


(a^2 −x^2 )
a

Thus

∫ √
(a^2 −x^2 )dx=

a^2
2

[θ+sinθcosθ]

=

a^2
2

[
sin−^1

x
a

+

(x
a

)√(a (^2) −x (^2) )
a
]
+c


a^2
2
sin−^1
x
a




  • x
    2

    (a^2 −x^2 )+c
    Problem 16. Evaluate
    ∫ 4
    0

    ( 16 −x^2 )dx.
    From Problem 15,
    ∫ 4
    0

    ( 16 −x^2 )dx


    [
    16
    2
    sin−^1
    x
    4




  • x
    2

    ( 16 −x^2 )
    ] 4
    0


    [
    8sin−^11 + 2

    ( 0 )
    ]
    −[8 sin−^10 +0]
    =8sin−^11 = 8

    2
    )
    = 4 πor 12. 57
    Now try the following exercise
    Exercise 158 Further problemson
    integration using the sineθsubstitution





  1. Determine



5

( 4 −t^2 )

dt.
[
5sin−^1

x
2

+c

]


  1. Determine



3

( 9 −x^2 )

dx.
[
3sin−^1

x
3

+c

]


  1. Determine


∫ √
( 4 −x^2 )dx.
[
2sin−^1

x
2

+

x
2


( 4 −x^2 )+c

]
Free download pdf