404 Higher Engineering Mathematics
- Determine
∫ √
( 16 − 9 t^2 )dt.
[
8
3sin−^1
3 t
4+
t
2√
( 16 − 9 t^2 )+c]- Evaluate
∫ 401
√
( 16 −x^2 )dx.[π
2or 1. 571]- Evaluate
∫ 10√
( 9 − 4 x^2 )dx. [2.760]40.6 Worked problems on integration
usingtanθsubstitution
Problem 17. Determine∫
1
(a^2 +x^2 )dx.Letx=atanθthendx
dθ=asec^2 θand dx=asec^2 θdθ.Hence∫
1
(a^2 +x^2 )dx=∫
1
(a^2 +a^2 tan^2 θ)(asec^2 θdθ)=∫
asec^2 θdθ
a^2 ( 1 +tan^2 θ)=∫
asec^2 θdθ
a^2 sec^2 θ,since1+tan^2 θ=sec^2 θ=∫
1
adθ=1
a(θ )+cSincex=atanθ,θ=tan−^1x
aHence∫
1
(a^2 +x^2 )dx=1
atan−^1x
a+cProblem 18. Evaluate∫ 201
( 4 +x^2 )dx.From Problem 17,∫ 201
( 4 +x^2 )dx=1
2[
tan−^1x
2] 2
0sincea= 2=1
2(tan−^11 −tan−^10 )=1
2(π
4− 0)=π
8or 0. 3927Problem 19. Evaluate∫ 105
( 3 + 2 x^2 )dx, correct
to 4 decimal places.
∫ 105
( 3 + 2 x^2 )dx=∫ 105
2[( 3 / 2 )+x^2 ]dx=5
2∫ 101
[√
( 3 / 2 )]^2 +x^2dx=5
2[
1
√
( 3 / 2 )tan−^1x
√
( 3 / 2 )] 10=5
2√(
2
3)[
tan−^1√(
2
3)
−tan−^10]=( 2. 0412 )[0. 6847 −0]= 1. 3976 , correct to 4 decimal places.Now try the following exerciseExercise 159 Further problems on
integration using thetanθsubstitution- Determine
∫
3
4 +t^2dt.[
3
2tan−^1t
2+c]- Determine
∫
5
16 + 9 θ^2dθ.
[
5
12tan−^13 θ
4+c]- Evaluate
∫ 103
1 +t^2dt. [2.356]- Evaluate
∫ 305
4 +x^2dx. [2.457]40.7 Worked problems on integration
using thesinhθsubstitution
Problem 20. Determine∫
1
√
(x^2 +a^2 )dx.Letx=asinhθ,thendx
dθ=acoshθand
dx=acoshθdθ