Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

404 Higher Engineering Mathematics



  1. Determine


∫ √
( 16 − 9 t^2 )dt.
[
8
3

sin−^1
3 t
4

+
t
2


( 16 − 9 t^2 )+c

]


  1. Evaluate


∫ 4

0

1

( 16 −x^2 )

dx.


2

or 1. 571

]


  1. Evaluate


∫ 1

0


( 9 − 4 x^2 )dx. [2.760]

40.6 Worked problems on integration


usingtanθsubstitution


Problem 17. Determine


1
(a^2 +x^2 )

dx.

Letx=atanθthen

dx

=asec^2 θand dx=asec^2 θdθ.

Hence


1
(a^2 +x^2 )

dx

=


1
(a^2 +a^2 tan^2 θ)

(asec^2 θdθ)

=


asec^2 θdθ
a^2 ( 1 +tan^2 θ)

=


asec^2 θdθ
a^2 sec^2 θ

,since1+tan^2 θ=sec^2 θ

=


1
a

dθ=

1
a

(θ )+c

Sincex=atanθ,θ=tan−^1

x
a

Hence


1
(a^2 +x^2 )

dx=

1
a

tan−^1

x
a

+c

Problem 18. Evaluate

∫ 2

0

1
( 4 +x^2 )

dx.

From Problem 17,

∫ 2

0

1
( 4 +x^2 )

dx

=

1
2

[
tan−^1

x
2

] 2
0

sincea= 2

=

1
2

(tan−^11 −tan−^10 )=

1
2


4

− 0

)

=

π
8

or 0. 3927

Problem 19. Evaluate

∫ 1

0

5
( 3 + 2 x^2 )

dx, correct
to 4 decimal places.
∫ 1

0

5
( 3 + 2 x^2 )

dx=

∫ 1

0

5
2[( 3 / 2 )+x^2 ]

dx

=

5
2

∫ 1

0

1
[


( 3 / 2 )]^2 +x^2

dx

=

5
2

[
1

( 3 / 2 )

tan−^1

x

( 3 / 2 )

] 1

0

=

5
2

√(
2
3

)[
tan−^1

√(
2
3

)
−tan−^10

]

=( 2. 0412 )[0. 6847 −0]

= 1. 3976 , correct to 4 decimal places.

Now try the following exercise

Exercise 159 Further problems on
integration using thetanθsubstitution


  1. Determine



3
4 +t^2

dt.

[
3
2

tan−^1

t
2

+c

]


  1. Determine



5
16 + 9 θ^2

dθ.
[
5
12

tan−^1

3 θ
4

+c

]


  1. Evaluate


∫ 1

0

3
1 +t^2

dt. [2.356]


  1. Evaluate


∫ 3

0

5
4 +x^2

dx. [2.457]

40.7 Worked problems on integration


using thesinhθsubstitution


Problem 20. Determine


1

(x^2 +a^2 )

dx.

Letx=asinhθ,then

dx

=acoshθand
dx=acoshθdθ
Free download pdf