Integration using trigonometric and hyperbolic substitutions 405
Hence
∫
1
√
(x^2 +a^2 )dx=∫
1
√
(a^2 sinh^2 θ+a^2 )(acoshθdθ)=∫
acoshθdθ
√
(a^2 cosh^2 θ),since cosh^2 θ−sinh^2 θ= 1=∫
acoshθ
acoshθdθ=∫
dθ=θ+c=sinh−^1x
a+c,sincex=asinhθItisshownonpage339that
sinh−^1x
a=ln{
x+√
(x^2 +a^2 )
a}
,which provides an alternative solution to
∫
1
√
(x^2 +a^2 )dxProblem 21. Evaluate∫ 201
√
(x^2 + 4 )dx, correctto 4 decimal places.∫ 201
√
(x^2 + 4 )dx=[
sinh−^1
x
2] 20or[
ln{
x+√
(x^2 + 4 )
2}] 20from Problem 20, wherea= 2
Using the logarithmic form,
∫ 2
01
√
(x^2 + 4 )dx=[
ln(
2 +√
8
2)
−ln(
0 +√
4
2)]=ln2. 4142 −ln1= 0. 8814 ,
correct to 4 decimal places.Problem 22. Evaluate∫ 212
x^2√
( 1 +x^2 )dx,correct to 3 significant figures.Since the integral contains a term of the form√
(a^2 +x^2 ),thenletx=sinhθ, from which
dx
dθ=coshθand dx=coshθdθHence∫
2
x^2√
( 1 +x^2 )dx=∫
2 (coshθdθ)
sinh^2 θ√
( 1 +sinh^2 θ)= 2∫
coshθdθ
sinh^2 θcoshθ,since cosh^2 θ−sinh^2 θ= 1= 2∫
dθ
sinh^2 θ= 2∫
cosech^2 θdθ=−2cothθ+ccothθ=coshθ
sinhθ=√
( 1 +sinh^2 θ)
sinhθ=√
( 1 +x^2 )
xHence∫ 212
x^2√
1 +x^2 )dx=−[2cothθ]^21 =− 2[√
( 1 +x^2 )
x] 21
=− 2[√
5
2−√
2
1]
= 0. 592 ,correct to 3 significant figuresProblem 23. Find∫√
(x^2 +a^2 )dx.Letx=asinhθthendx
dθ=acoshθand
dx=acoshθdθHence∫√
(x^2 +a^2 )dx=∫√
(a^2 sinh^2 θ+a^2 )(acoshθdθ)=∫√
[a^2 (sinh^2 θ+ 1 )](acoshθdθ)=∫ √
(a^2 cosh^2 θ)(acoshθdθ),
since cosh^2 θ−sinh^2 θ= 1=∫
(acoshθ)(acoshθ)dθ=a^2∫
cosh^2 θdθ=a^2∫ (
1 +cosh 2θ
2)
dθ