Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using trigonometric and hyperbolic substitutions 405


Hence



1

(x^2 +a^2 )

dx

=


1

(a^2 sinh^2 θ+a^2 )

(acoshθdθ)

=


acoshθdθ

(a^2 cosh^2 θ)

,

since cosh^2 θ−sinh^2 θ= 1

=


acoshθ
acoshθ

dθ=


dθ=θ+c

=sinh−^1

x
a

+c,sincex=asinhθ

Itisshownonpage339that


sinh−^1

x
a

=ln

{
x+


(x^2 +a^2 )
a

}
,

which provides an alternative solution to



1

(x^2 +a^2 )

dx

Problem 21. Evaluate

∫ 2

0

1

(x^2 + 4 )

dx, correct

to 4 decimal places.

∫ 2

0

1

(x^2 + 4 )

dx=

[
sinh−^1
x
2

] 2

0

or

[
ln

{
x+


(x^2 + 4 )
2

}] 2

0

from Problem 20, wherea= 2


Using the logarithmic form,
∫ 2


0

1

(x^2 + 4 )

dx

=

[
ln

(
2 +


8
2

)
−ln

(
0 +


4
2

)]

=ln2. 4142 −ln1= 0. 8814 ,
correct to 4 decimal places.

Problem 22. Evaluate

∫ 2

1

2
x^2


( 1 +x^2 )

dx,

correct to 3 significant figures.

Since the integral contains a term of the form√
(a^2 +x^2 ),thenletx=sinhθ, from which
dx

=coshθand dx=coshθdθ

Hence


2
x^2


( 1 +x^2 )

dx

=


2 (coshθdθ)
sinh^2 θ


( 1 +sinh^2 θ)

= 2


coshθdθ
sinh^2 θcoshθ

,

since cosh^2 θ−sinh^2 θ= 1

= 2



sinh^2 θ

= 2


cosech^2 θdθ

=−2cothθ+c

cothθ=

coshθ
sinhθ

=


( 1 +sinh^2 θ)
sinhθ

=


( 1 +x^2 )
x

Hence

∫ 2

1

2
x^2


1 +x^2 )

dx

=−[2cothθ]^21 =− 2

[√
( 1 +x^2 )
x

] 2

1
=− 2

[√
5
2



2
1

]
= 0. 592 ,

correct to 3 significant figures

Problem 23. Find

∫√
(x^2 +a^2 )dx.

Letx=asinhθthen

dx

=acoshθand
dx=acoshθdθ

Hence

∫√
(x^2 +a^2 )dx

=

∫√
(a^2 sinh^2 θ+a^2 )(acoshθdθ)

=

∫√
[a^2 (sinh^2 θ+ 1 )](acoshθdθ)

=

∫ √
(a^2 cosh^2 θ)(acoshθdθ),
since cosh^2 θ−sinh^2 θ= 1

=


(acoshθ)(acoshθ)dθ=a^2


cosh^2 θdθ

=a^2

∫ (
1 +cosh 2θ
2

)
Free download pdf