Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

406 Higher Engineering Mathematics


=

a^2
2

(
θ+

sinh2θ
2

)
+c

=

a^2
2

[θ+sinhθcoshθ]+c,

since sinh2θ=2sinhθcoshθ

Sincex=asinhθ,thensinhθ=

x
a

andθ=sinh−^1

x
a
Also since cosh^2 θ−sinh^2 θ= 1

then coshθ=


( 1 +sinh^2 θ)

=

√[
1 +

(x
a

) 2 ]
=

√(
a^2 +x^2
a^2

)

=


(a^2 +x^2 )
a

Hence

∫ √
(x^2 +a^2 )dx

=

a^2
2

[
sinh−^1

x
a

+

(x
a

)√(x (^2) +a (^2) )
a
]
+c


a^2
2
sinh−^1
x
a



  • x
    2

    (x^2 +a^2 )+c
    Now try the following exercise
    Exercise 160 Further problems on
    integration using thesinhθsubstitution



  1. Find



2

(x^2 + 16 )

dx.

[
2sinh−^1

x
4

+c

]


  1. Find



3

( 9 + 5 x^2 )

dx.
[
3

5

sinh−^1


5
3
x+c

]


  1. Find


∫ √
(x^2 + 9 )dx.
[
9
2

sinh−^1

x
3

+

x
2


(x^2 + 9 )+c

]


  1. Find


∫ √
( 4 t^2 + 25 )dt.
[
25
4

sinh−^1
2 t
5

+
t
2


( 4 t^2 + 25 )+c

]


  1. Evaluate


∫ 3

0

4

(t^2 + 9 )

dt. [3.525]


  1. Evaluate


∫ 1

0


( 16 + 9 θ^2 )dθ. [4.348]

40.8 Worked problems on integration


using thecoshθsubstitution


Problem 24. Determine


1

(x^2 −a^2 )

dx.

Letx=acoshθthen

dx

=asinhθand
dx=asinhθdθ

Hence


1

(x^2 −a^2 )

dx

=


1

(a^2 cosh^2 θ−a^2 )

(asinhθdθ)

=


asinhθdθ

[a^2 (cosh^2 θ− 1 )]

=


asinhθdθ

(a^2 sinh^2 θ)

,

since cosh^2 θ−sinh^2 θ= 1

=


asinhθdθ
asinhθ

=


dθ=θ+c

=cosh−^1

x
a

+c,sincex=acoshθ

Itisshownonpage339that

cosh−^1

x
a

=ln

{
x+


(x^2 −a^2 )
a

}

which provides as alternative solution to

1

(x^2 −a^2 )

dx

Problem 25. Determine


2 x− 3

(x^2 − 9 )

dx.
Free download pdf