Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

416 Higher Engineering Mathematics


If t=tan

θ
2

then cosθ=

1 −t^2
1 +t^2

and dx=

2dt
1 +t^2
from equations (2) and (3).

Thus



5 +4cosθ

=


(
2dt
1 +t^2

)

5 + 4

(
1 −t^2
1 +t^2

)

=


(
2dt
1 +t^2

)

5 ( 1 +t^2 )+ 4 ( 1 −t^2 )
( 1 +t^2 )

= 2


dt
t^2 + 9

= 2


dt
t^2 + 32

= 2

(
1
3

tan−^1

t
3

)
+c,

from 12 of Table 40.1, page 399. Hence


5 +4cosθ

=

2
3

tan−^1

(
1
3

tan

θ
2

)
+c

Now try the following exercise

Exercise 165 Further problems on the
t=tan

θ
2

substitution

Integratethefollowingwithrespect to thevariable:

1.



1 +sinθ




− 2

1 +tan

θ
2

+c




2.


dx
1 −cosx+sinx


⎣ln


⎪⎨

⎪⎩

tan

x
2
1 +tan

x
2


⎪⎬

⎪⎭

+c




3.



3 +2cosα
[
2

5

tan−^1

(
1

5

tan

α
2

)
+c

]

4.


dx
3sinx−4cosx



1
5

ln


⎪⎨

⎪⎩

2tan
x
2

− 1

tan

x
2

+ 2


⎪⎬

⎪⎭
+c




42.3 Further worked problems on the


t=tan


θ


2


substitution


Problem 5. Determine


dx
sinx+cosx

If tan

x
2

then sinx=

2 t
1 +t^2

,cosx=

1 −t^2
1 +t^2

and

dx=

2dt
1 +t^2

from equations (1), (2) and (3).

Thus

dx
sinx+cosx

=


2dt
1 +t^2
(
2 t
1 +t^2

)
+

(
1 −t^2
1 +t^2

)

=


2dt
1 +t^2
2 t+ 1 −t^2
1 +t^2

=


2dt
1 + 2 t−t^2

=


−2dt
t^2 − 2 t− 1

=


−2dt
(t− 1 )^2 − 2

=


2dt
(


2 )^2 −(t− 1 )^2

= 2

[
1
2


2

ln

{√
2 +(t− 1 )

2 −(t− 1 )

}]
+c

(see Problem 11, Chapter 41, page 413),

i.e.


dx
sinx+cosx

=

1

2

ln


⎪⎨

⎪⎩


2 − 1 +tan

x
2

2 + 1 −tan

x
2


⎪⎬

⎪⎭

+c

Problem 6.∫ Determine
dx
7 −3sinx+6cosx

From equations (1) and (3),

dx
7 −3sinx+6cosx

=

∫ 2dt
1 +t^2

7 − 3

(
2 t
1 +t^2

)
+ 6

(
1 −t^2
1 +t^2

)
Free download pdf