Thet=tanθ 2 substitution 415
42.2 Worked problemson the
t=tan
θ
2
substitution
Problem 1. Determine∫
dθ
sinθIft=tan
θ
2
then sinθ=
2 t
1 +t^2anddθ=
2dt
1 +t^2fromequations (1) and (3).
Thus
∫
dθ
sinθ=∫
1
sinθdθ=∫^1
2 t
1 +t^2(
2 dt
1 +t^2)=∫
1
tdt=lnt+cHence∫
dθ
sinθ=ln(
tanθ
2)
+cProblem 2. Determine∫
dx
cosxIf tan
x
2then cosx=1 −t^2
1 +t^2and dx=2dt
1 +t^2fromequations (2) and (3).
Thus
∫
dx
cosx=∫
1
1 −t^2
1 +t^2(
2dt
1 +t^2)=∫
2
1 −t^2dt2
1 −t^2may be resolved into partial fractions (seeChapter 2).
Let2
1 −t^2=2
( 1 −t)( 1 +t)=A
( 1 −t)+B
( 1 +t)=A( 1 +t)+B( 1 −t)
( 1 −t)( 1 +t)
Hence 2 =A( 1 +t)+B( 1 −t)When t= 1 , 2 = 2 A, from which,A= 1When t=− 1 , 2 = 2 B, from which,B= 1Hence∫
2dt
1 −t^2=∫
1
( 1 −t)+1
( 1 +t)dt=−ln( 1 −t)+ln( 1 +t)+c=ln{
( 1 +t)
( 1 −t)}
+cThus∫
dx
cosx=ln⎧
⎪⎨⎪⎩1 +tanx
2
1 −tanx
2⎫
⎪⎬⎪⎭+cNote that since tanπ
4=1, the above result may be
written as:∫
dx
cosx=ln⎧
⎪⎨⎪⎩tanπ
4+tanx
2
1 −tanπ
4tanx
2⎫
⎪⎬⎪⎭+c=ln{
tan(π
4+x
2)}
+cfrom compound angles, Chapter 17.Problem 3. Determine∫
dx
1 +cosxIf tanx
2then cos x=1 −t^2
1 +t^2and dx=2dt
1 +t^2from
equations (2) and (3).Thus∫
dx
1 +cosx=∫
1
1 +cosxdx=∫
11 +1 −t^2
1 +t^2(
2dt
1 +t^2)=∫
1
( 1 +t^2 )+( 1 −t^2 )
1 +t^2(
2dt
1 +t^2)=∫
dtHence∫
dx
1 +cosx=t+c=tanx
2+cProblem 4. Determine∫
dθ
5 +4cosθ