Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

430 Higher Engineering Mathematics


du
dx

=(n− 1 )sinn−^2 xcosx and

du=(n− 1 )sinn−^2 xcosxdx

and let dv=sinxdx, from which,
v=


sinxdx=−cosx. Hence,

In=


sinn−^1 xsinxdx

=(sinn−^1 x)(−cosx)



(−cosx)(n− 1 )sinn−^2 xcosxdx

=−sinn−^1 xcosx

+(n− 1 )


cos^2 xsinn−^2 xdx

=−sinn−^1 xcosx

+(n− 1 )


( 1 −sin^2 x)sinn−^2 xdx

=−sinn−^1 xcosx

+(n− 1 )

{∫
sinn−^2 xdx−


sinnxdx

}

i.e. In=−sinn−^1 xcosx

+(n− 1 )In− 2 −(n− 1 )In

i.e. In+(n− 1 )In

=−sinn−^1 xcosx+(n− 1 )In− 2

and nIn=−sinn−^1 xcosx+(n− 1 )In− 2

from which,

sinnxdx=

In=−

1
n

sinn−^1 xcosx+

n− 1
n

In− 2 (4)

Problem 8.∫ Use a reduction formula to determine
sin^4 xdx.

Using equation (4),

sin^4 xdx=I 4 =−

1
4

sin^3 xcosx+

3
4

I 2

I 2 =−

1
2

sin^1 xcosx+

1
2

I 0

and I 0 =


sin^0 xdx=


1dx=x

Hence

sin^4 xdx=I 4 =−

1
4

sin^3 xcosx

+

3
4

[

1
2

sinxcosx+

1
2

(x)

]

=−
1
4

sin^3 xcosx−
3
8

sinxcosx

+

3
8

x+c

Problem 9. Evaluate

∫ 1
0 4sin

(^5) tdt, correct to 3
significant figures.
Using equation (4),

sin^5 tdt=I 5 =−
1
5
sin^4 tcost+
4
5
I 3
I 3 =−
1
3
sin^2 tcost+
2
3
I 1
and I 1 =−
1
1
sin^0 tcost+ 0 =−cost
Hence

sin^5 tdt=−
1
5
sin^4 tcost



  • 4
    5
    [

    1
    3
    sin^2 tcost+
    2
    3
    (−cost)
    ]
    =−
    1
    5
    sin^4 tcost−
    4
    15
    sin^2 tcost

    8
    15
    cost+c
    and
    ∫t
    0
    4sin^5 tdt
    = 4
    [

    1
    5
    sin^4 tcost

    4
    15
    sin^2 tcost−
    8
    15
    cost
    ] 1
    0
    = 4
    [(

    1
    5
    sin^4 1cos1−
    4
    15
    sin^2 1cos1

    8
    15
    cos1
    )

    (
    − 0 − 0 −
    8
    15
    )]

Free download pdf