Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Numerical methods for first order differential equations 469


yP 1 =y 0 +h(y′) 0 = 4 + 0. 2 ( 2 )= 4. 4

yC 1 =y 0 +^12 h[(y′) 0 +f(x 1 ,yP 1 )]

=y 0 +^12 h[(y′) 0 +( 3 + 3 x 1 −yP 1 )]

= 4 +^12 ( 0. 2 )[2+( 3 + 3 ( 1. 2 )− 4. 4 )]

=4.42

(y′) 1 = 3 + 3 x 1 −yP 1 = 3 + 3 ( 1. 2 )− 4. 42 = 2. 18


Thus the first two lines of Table 49.11 have been
completed.


For line 3,x 1 = 1. 4


yP 1 =y 0 +h(y′) 0 = 4. 42 + 0. 2 ( 2. 18 )= 4. 856

yC 1 =y 0 +^12 h[(y′) 0 +( 3 + 3 x 1 −yP 1 )]

= 4. 42 +^12 ( 0. 2 )[2. 18

+( 3 + 3 ( 1. 4 )− 4. 856 )]

=4.8724

(y′) 1 = 3 + 3 x 1 −yP 1 = 3 + 3 ( 1. 4 )− 4. 8724

= 2. 3276

For line 4,x 1 = 1. 6


yP 1 =y 0 +h(y′) 0 = 4. 8724 + 0. 2 ( 2. 3276 )

= 5. 33792

yC 1 =y 0 +^12 h[(y′) 0 +( 3 + 3 x 1 −yP 1 )]

= 4. 8724 +^12 ( 0. 2 )[2. 3276

+( 3 + 3 ( 1. 6 )− 5. 33792 )]

=5.351368

Table 49.11
x 0 y 0 y′ 0


  1. 1.0 4 2

  2. 1.2 4.42 2.18

  3. 1.4 4.8724 2.3276

  4. 1.6 5.351368 2.448632

  5. 1.8 5.85212176 2.54787824

  6. 2.0 6.370739847


(y′) 1 = 3 + 3 x 1 −yP 1

= 3 + 3 ( 1. 6 )− 5. 351368

= 2. 448632

For line 5,x 1 = 1. 8

yP 1 =y 0 +h(y′) 0 = 5. 351368 + 0. 2 ( 2. 448632 )

= 5. 8410944

yC 1 =y 0 +^12 h[(y′) 0 +( 3 + 3 x 1 −yP 1 )]

= 5. 351368 +^12 ( 0. 2 )[2. 448632

+( 3 + 3 ( 1. 8 )− 5. 8410944 )]

=5.85212176

(y′) 1 = 3 + 3 x 1 −yP 1

= 3 + 3 ( 1. 8 )− 5. 85212176

= 2. 54787824

For line 6,x 1 = 2. 0

yP 1 =y 0 +h(y′) 0

= 5. 85212176 + 0. 2 ( 2. 54787824 )

= 6. 361697408

yC 1 =y 0 + 21 h[(y′) 0 +( 3 + 3 x 1 −yP 1 )]

= 5. 85212176 +^12 ( 0. 2 )[2. 54787824

+( 3 + 3 ( 2. 0 )− 6. 361697408 )]

=6.370739843

Problem 6. Using the integrating factor
method the solution of the differential equation
dy
dx

= 3 ( 1 +x)−yof Problem 5 isy= 3 x+e^1 −x.
Whenx= 1 .6, compare the accuracy, correct to 3
decimal places, of the Euler and the Euler-Cauchy
methods.

When x= 1 .6, y= 3 x+e^1 −x= 3 ( 1. 6 )+e^1 −^1.^6 =
4. 8 +e−^0.^6 = 5 .348811636.
From Table 49.1, page 463, by Euler’s method, when
x= 1 .6,y= 5. 312
% error in the Euler method

=

(
5. 348811636 − 5. 312
5. 348811636

)
×100%

=0.688%
Free download pdf