Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

3.4. VARIATIONS WITHDIVA-FREE CONSTRAINTS 147


For the general form of Yang-Mills functional given by

(3.4.10) F=



M

[



1


4


GabFμ νaFμ νb

]


dx,

where(Gab)is the Riemann metric onSU(N)given by (2.4.49). The derivative operator ofF
in (3.4.10) is as follows


(3.4.11) δF=Gab∂αFα βb −ggα μGbcλdacFα βbGdμ.


3.4.3 Derivative operator of the Einstein-Hilbert functional


The Einstein-Hilbert functional is in the form


(3.4.12) F=



M

R



−gdx,

whereMis ann-dimensional Riemannian manifold with metricgij, andR=gijRijis the
scalar curvature ofM, andRijis the Ricci curvature tensor:


Rij=

1


2


gkl

(


∂^2 gkl
∂xi∂xj

+


∂^2 gij
∂xk∂xl


∂^2 gik
∂xj∂xl


∂^2 gjl
∂xi∂xk

)


(3.4.13) +gklgrs(ΓrklΓijs−ΓrikΓsjl),


and the Levi-Civita connectionsΓrkl are written as


(3.4.14) Γrkl=


1


2


grs

(


∂gks
∂xl

+


∂gls
∂xk


∂gkl
∂xs

)


.


First we verify the following derivative operatorδFof the Einstein-Hilbert functional
(3.4.12)-(3.4.14):


(3.4.15) δF=Rij−


1


2


gijR.

Note thatgijandgijhave the relations

gij=

1


g

(3.4.16) × ||gij||, ||gij||the cofactor ofgij,


gij=

1


g

(3.4.17) × ||gij||, ||gij||the cofactor ofgij.


Hence by (3.4.16), we have


d




λ= 0

(3.4.18) det(gij+λ ̃gij) = ̃gij× ||gij||= ̃gijgijg.


In addition, bygikgk j=δij, we obtain


d




λ= 0

(gik+λg ̃ik)(gk j+λg ̃k j) = 0.
Free download pdf