Computational Physics

(Rick Simeone) #1

References 537
[9] J. Goodman and A. D. Sokal, ‘Multigrid Monte Carlo method for lattice field theories,’Phys.
Rev. Lett., 56 (1986), 1015–18.
[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes, 2nd edn.
Cambridge, Cambridge University Press, 1992.
[11] S. L. Adler, ‘Over-relaxation method for the Monte Carlo evaluation of the partition function
for multiquadratic actions,’Phys. Rev. Lett., 23 (1981), 2901–4.
[12] C. Whitmer, ‘Over-relaxation methods for Monte Carlo simulations of quadratic and multiquad-
ratic actions,’Phys. Rev. D, 29 (1984), 306–11.
[13] S. Duane and J. B. Kogut, ‘Hybrid stochastic differential-equations applied to quantum
chromodynamics,’Phys. Rev. Lett., 55 (1985), 2774–7.
[14] S. Duane, ‘Stochastic quantization versus the microcanonical ensemble – getting the best of
both worlds,’Nucl. Phys. B, 275 (1985), 398–420.
[15] E. Dagotto and J. B. Kogut, ‘Numerical analysis of accelerated stochastic algorithms near a
critical temperature,’Phys. Rev. Lett., 58 (1987), 299–302.
[16] E. Dagotto and J. B. Kogut, ‘Testing accelerated stochastic algorithms in 2 dimensions – the
SU(3)×SU(3) spin model,’Nucl. Phys. B, 290 (1987), 415–68.
[17] G. G. Batrouni, G. R. Katz, A. S. Kronfeld,et al., ‘Langevin simulation of lattice field theories,’
Phys. Rev. D, 32 (1985), 2736–47.
[18] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, ‘Hybrid Monte Carlo,’Phys. Lett. B,
195 (1987), 216–22.
[19] M. Creutz, ‘Global Monte Carlo algorithms for many-fermion systems,’Phys. Rev. D, 38 (1988),
1228–38.
[20] R. H. Swendsen and J.-S. Wang, ‘Nonuniversal critical dynamics in Monte Carlo simulations,’
Phys. Rev. Lett., 58 (1987), 86–8.
[21] U. Wolff, ‘Comparison between cluster Monte Carlo algorithms in the Ising models,’Phys. Lett.
B, 228 (1989), 379–82.
[22] C. M. Fortuin and P. W. Kasteleyn, ‘On the random cluster model. I. Introduction and relation
to other models,’Physica, 57 (1972), 536–64.
[23] J. Hoshen and R. Kopelman, ‘Percolation and cluster distribution. I. Cluster multiple labeling
technique and critical concentration algorithm,’Phys. Rev. B, 14 (1976), 3438–45.
[24] U. Wolff, ‘Monte Carlo simulation of a lattice field theory as correlated percolation,’Nucl. Phys.
B,FS300(1988), 501–16.
[25] M. Sweeny, ‘Monte Carlo study of weighted percolation clusters relevant to the Potts models,’
Phys. Rev. B, 27 (1983), 4445–55.
[26] M. Creutz, ‘Microcanonical Monte Carlo simulation,’Phys. Rev. Lett., 50 (1983), 1411–14.
[27] U. Wolff, ‘Collective Monte Carlo updating for spin systems,’Phys. Rev. Lett., 69 (1989), 361–4.
[28] R. G. Edwards and A. D. Sokal, ‘Dynamic critical behaviour of Wolff’s collective-mode Monte
Carlo algorithm for the two-dimensional O(n)nonlinearσmodel,’Phys. Rev. D, 40 (1989),
1374–7.
[29] B. Nienhuis, ‘Coulomb gas formulation of two-dimensional phase transitions,’Phase Transitions
and Critical Phenomena, vol. 11 (C. Domb and J. L. Lebowitz, eds.). London, Academic Press,
1987.
[30] D. J. Bishop and J. D. Reppy, ‘Study of the superfluid transition in two-dimensional^4 He films,’
Phys. Rev. Lett., 40 (1978), 1727–30.
[31] C. J. Lobb, ‘Phase transitions in arrays of Josephson junctions,’Physica B, 126 (1984), 319–25.
[32] T. Ohta and D. Jasnow, ‘XYmodel and the superfluid density in two dimensions,’Phys. Rev. B,
20 (1979), 139–46.
[33] M. Kosterlitz and D. J. Thouless, ‘Ordering, metastability and phase transitions in two-
dimensional systems,’J. Phys. C, 6 (1973), 1181–203.
[34] M. Plischke and H. Bergersen,Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-
Hall, 1989.

Free download pdf