MATHEMATICAL RELATIONS 841
∫
x^2 dx
(a^2 +x^2 )^2
=
−x
2 (a^2 +x^2 )
+
1
2 a
tan−^1
x
a
∫
lnxdx=xlnx−x
∫
eaxdx=
eax
a
,areal or complex
∫
xeaxdx=eax(
x
a
−
1
a^2
),areal or complex
∫
x^2 eaxdx=eax(
x^2
a
−
2 x
a^2
+
2
a^3
),areal or complex
∫
x^3 eaxdx=eax(
x^3
a
−
3 x^2
a^2
+
6 x
a^3
−
6
a^4
),areal or complex
∫
eaxsin(x) dx=
eax
a^2 + 1
[asin(x)−cos(x)]
∫
eaxcos(x) dx=
eax
a^2 + 1
[acos(x)+sin(x)]
∫
cos(x) dx=sin(x);
∫
cosax dx=
1
a
sinax
∫
xcos(x) dx=cos(x)+xsin(x)
∫
x^2 cos(x) dx= 2 xcos(x)+(x^2 − 2 )sin(x)
∫
sin(x) dx=−cos(x);
∫
sinax dx=−
1
a
cosax
∫
xsin(x) dx= sin(x)−xcos(x)
∫
x^2 sin(x) dx= 2 xsin(x)−(x^2 − 2 )cos(x)
∫∞
−∞
e−a
(^2) x (^2) +bx
dx=
√
π
a
eb
(^2) /( 4 a (^2) )
,a> 0
∫∞
0
x^2 e−x
2
dx=
√
π
4
∫∞
0
Sa(x) dx=
∫∞
0
sin(x)
x
dx=
π
2
∫∞
0
Sa^2 (x) dx=
π
2