128 4. Particular Determinants
=
n− 1
∑i=0(−1)
i(
n− 1i)
(h+n+i)!(h+i+ 1)!xh+i+1=
n
∑j=1(−1)
j− 1(
n− 1j− 1)
(h+n+j−1)!(h+j)!xh+j=
(n−1)!2
h!xh+1(h+n)!n
∑j=1K
1 j
xj− 1
.The theorem follows.
LetSn(x, h)=n
∑j=1K
(n)
nj
(−x)j− 1=
∣
∣
∣
∣
∣
∣
∣
∣
∣
k 11 k 12 k 13 ··· k 1 nk 21 k 22 k 23 ··· k 2 n......................................kn− 1 , 1 kn− 1 , 2 kn− 1 , 3 ··· kn− 1 ,n1 −xx2
··· (−x)n− 1∣
∣
∣
∣
∣ ∣ ∣ ∣ ∣ n
.The column operations
C
′
j=Cj+xCj−^1 ,^2 ≤j≤n,remove thex’s from the last row and yield the formula
Sn(x, h)=(−1)n+1∣
∣
∣
∣
xh+i+j− 1+
1
h+i+j∣
∣
∣
∣
n− 1.
Let
Tn(x, h)=(−1)n+1∣
∣
∣
∣
1+xh+i+j− 1−
1
h+i+j∣
∣
∣
∣
n− 1.
Theorem 4.38.
a.(h+n−1)!2h!(n−1)!Sn(x, h)Sn(0,h)=D
h+n− 1
[xn− 1
(1 +x)h+n− 1
].b.
(h+n−1)!h!(n−1)!Tn(x, h)Tn(0,h)=D
h+n− 1
[xh+n− 1
(1 +x)n− 1
].Proof.
Sn(0,h)=K(n)
n 1=
Kn(h)VnnVn 1h+n=(−1)
n+1
Kn(h)Vnn(
h+n− 1h