Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

128 4. Particular Determinants


=

n− 1

i=0

(−1)

i

(

n− 1

i

)

(h+n+i)!

(h+i+ 1)!

x

h+i+1

=

n

j=1

(−1)

j− 1

(

n− 1

j− 1

)

(h+n+j−1)!

(h+j)!

x

h+j

=

(n−1)!

2
h!x

h+1

(h+n)!

n

j=1

K

1 j
x

j− 1
.

The theorem follows. 


Let

Sn(x, h)=

n

j=1

K

(n)
nj
(−x)

j− 1

=










k 11 k 12 k 13 ··· k 1 n

k 21 k 22 k 23 ··· k 2 n

......................................

kn− 1 , 1 kn− 1 , 2 kn− 1 , 3 ··· kn− 1 ,n

1 −xx

2
··· (−x)

n− 1





∣ ∣ ∣ ∣ ∣ n
.

The column operations


C


j=Cj+xCj−^1 ,^2 ≤j≤n,

remove thex’s from the last row and yield the formula


Sn(x, h)=(−1)

n+1





x

h+i+j− 1

+

1

h+i+j





n− 1

.

Let


Tn(x, h)=(−1)

n+1





1+x

h+i+j− 1


1

h+i+j





n− 1

.

Theorem 4.38.


a.

(h+n−1)!

2

h!(n−1)!

Sn(x, h)

Sn(0,h)

=D

h+n− 1
[x

n− 1
(1 +x)

h+n− 1
].

b.


(h+n−1)!

h!(n−1)!

Tn(x, h)

Tn(0,h)

=D

h+n− 1
[x

h+n− 1
(1 +x)

n− 1
].

Proof.


Sn(0,h)=K

(n)
n 1

=

Kn(h)VnnVn 1

h+n

=(−1)

n+1
Kn(h)Vnn

(

h+n− 1

h

)

,
Free download pdf